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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is broadly used to investigate the dynamics of molecules in 

cells and tissues, notably to quantify diffusion coefficients. FRAP is based on the spatiotemporal imaging of fluorescent mole

cules after an initial bleaching of fluorescence in a region of the sample. Although a large number of methods have been devel

oped to infer kinetic parameters from experiments, it is still a challenge to fully characterize molecular dynamics from noisy 

experiments in which diffusion is coupled to other molecular processes or in which the initial bleaching profile is not perfectly 

controlled. To address this challenge, we have developed HiFRAP to quantify the reaction- (or exchange-) diffusion kinetic pa

rameters from FRAP under imperfect experimental conditions. HiFRAP is based on a low-rank approximation of a kernel related 

to the model Green’s function and is implemented as an ImageJ/Python macro for (potentially curved) one-dimensional systems 

and for two-dimensional systems. To the best of our knowledge, HiFRAP offers features that have not been combined together: 

making no assumption on the initial bleaching profile, which does not need to be known; accounting for the limitation of the op

tical setup by diffraction; inferring several kinetic parameters from a single experiment; providing errors on parameter estimation; 

and testing model goodness. In the future, our approach could be applied to other dynamical processes described by linear par

tial differential equations, which could be useful beyond FRAP, in experiments where the concentration fields are monitored over 

space and time.

INTRODUCTION

Cells and tissues are the place of permanent transport and 

transformation of matter. At cellular level, trafficking, bind

ing and unbinding, or diffusion, are essential in the self-or

ganization of the cell, for instance. At multicellular 

level, diffusion, directed transport, and degradation of mor

phogens are key to setting morphogen distributions and 

providing positional information during organism develop

ment. Several methods have been developed to assess such 

molecular dynamics, including fluorescence recovery after 

photobleaching (FRAP), fluorescence spectroscopy, or sin

gle-particle tracking (1). Among these, FRAP appears as 

the most widely used method (1–5), likely because the mi

croscopy setup is technically accessible.

FRAP is designed to study the dynamics of fluorescent 

molecules by monitoring the response to an initial perturba

tion. Molecules are first photobleached by strong and short 

light pulses in a region of the sample, a spot that is often disk 

or square shaped. This causes a drop in light intensity ree

mitted by the sample in this region. Fluorescence is then fol

lowed over space and time by time-lapse imaging with a 

microscope. Typically, the fluorescence (partially) recovers 
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SIGNIFICANCE Fluorescence recovery after photobleaching (FRAP) is a microscopy approach that is widely used to 

investigate the diffusion and transport of molecules in life sciences and in material sciences. Numerous methods have 

been developed to derive kinetic parameters such as diffusion and binding coefficients. However, these methods suffer 

from limitations associated with experimental constraints, such as technical noise or an imperfectly known initial condition. 

To circumvent these limitations, we developed a comprehensive approach to estimate several kinetic parameters from a 

single experiment, to assess the precision of estimation, and to test whether the underlying model is well suited. We 

implemented this approach in HiFRAP, an ImageJ/Python macro of broad applicability to one- and two-dimensional 

systems.
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its initial level, and the pattern of recovery is informative of 

the underlying dynamics. Different bleaching geometries 

have been used depending on the biological system under 

investigation, imaging speed, and optical resolution. As 

alternative to spot FRAP (e.g., bleaching a disk), a long 

and thin strip can be bleached (6,7) and a line orthogonal 

to the strip is monitored, allowing for a faster imaging 

rate and a simplified analysis using one-dimensional (1D) 

spatial models. Another configuration is inverse FRAP 

(iFRAP), where the entire system is bleached except for a 

small region (8). Inverse FRAP can also be implemented us

ing photoconversion, rather than traditional photobleaching, 

to reduce photodamage and better preserve cell viability 

during imaging (9). In this setup, the fluorescent signal is 

present only in a specific region first and then decreases 

over time, yielding a decay curve.

FRAP is routinely used to determine diffusion coeffi

cients. When molecules only undergo diffusion, the time

scale of fluorescence recovery (or decay for iFRAP) is a 

function of the diffusion coefficient and of the size and 

shape of the initially bleached region (we will often use 

FRAPped region in the following) (3–5). When molecules 

only undergo binding and unbinding to immobile substrates, 

then the timescale of fluorescence recovery is the inverse of 

the binding rate (3–5). Here, we consider more complex sit

uations where several molecular processes are coupled, such 

as diffusion and binding/unbinding.

At the cellular level, FRAP has also been used to investi

gate protein synthesis (10), dynamics of molecular conden

sates (11), mechanosensing (12), transport of mRNA (13), 

or cell adhesion (14,15). At the tissue level, FRAP has 

been used to assess diffusion of morphogens (16) or expan

sion of the extracellular matrix (17). FRAP also appears in 

material science, for instance, to characterize pharmaceu

tical compounds (3,18). Despite the practical importance 

of FRAP, a comprehensive method to analyze and interpret 

FRAP data is still lacking (3). Here, we contribute to tack

ling this issue.

The classical method to determine diffusion coefficient is 

based on the theoretical calculation of the average concen

tration in the bleached region and fits to the recovery curve 

of fluorescence in that region (19,20). Although the classical 

method is easy to implement, it assumes that the initial 

bleaching profile is perfectly known, it does not use the in

formation available in spatial variations, and it does not 

easily allow to distinguish diffusion from other processes 

(19). These limitations prompted the development of more 

sophisticated methods. Methods that do not require the 

knowledge of the bleaching profile are based on the decom

position of the fluorescence levels into Fourier modes and fit 

the temporal decay of the mode amplitude to theoretical so

lutions, in linear (21,22), in axisymmetric geometry (23), or 

without assumptions on geometry (24). Methods that use all 

spatial information to improve precision use fits of the 

spatiotemporal concentration field to analytical (25) or 

numerical (26,27) solutions of the diffusion equation, the 

former being restricted to Heaviside-like initial bleaching 

profile and the latter allowing initial bleaching profile of 

arbitrary shape. Other studies built methods to account for 

the effect of boundary conditions on diffusion (11), for 

diffusion on curved surfaces (9,28), or for anomalous diffu

sion (29,30).

Several studies have addressed the use of FRAP to deter

mine the kinetic parameters of chemical reactions, binding/ 

unbinding dynamics, or exchanges between compartments, 

which all formally amount to chemical reactions. In general, 

these studies directly deduce constants from average pre

bleaching fluorescence and recovery time of average fluo

rescence in the bleached area (10,31–33), possibly 

accounting for rapid diffusion before the reactions take 

place. However, there are discrepancies between values of 

kinetic parameters according to the model used (34) and it 

is difficult to disentangle reactions from diffusion (35).

Another line of investigation has accounted for the 

coupling between reactions and diffusion. It is possible to 

solve numerically reaction-diffusion equations in complex 

realistic geometries to simulate FRAP and investigate 

changes in qualitative behavior according to parameters 

(36). To obtain kinetic parameters, an option is to use fluo

rescence recovery in the bleached area or in the region of in

terest (ROI) and to fit analytical recovery curves of several 

experiments with varying sizes of the bleached regions, 

which provides enough information to deduce more than 

one kinetic parameter (6,37,38). Another option is to use 

all spatial information and fit the spatiotemporal concentra

tion field (fluorescence level) to analytical (29,39) or numer

ical (40–43) solutions of reaction-diffusion equations (for 

one or two species, according to the problem of interest). 

We note that these methods are constrained by the need to 

know the initial condition, i.e., the profile of fluorescence af

ter initial bleaching. Using Fourier coefficients of the fluo

rescence field (44) like in some of the methods to infer 

diffusivity already mentioned, it was possible to get rid of 

this constraint, at the price of averaging several experiments 

together to average out noise. We aim at going beyond lim

itations by noise and the need to precisely know the 

bleached profile. Indeed, the bleached profile is difficult to 

control experimentally (24) and discrepancies with the 

assumed profile generally lead to a misestimation of kinetic 

parameters (6,20).

Some studies accounted for other couplings, such as 

advection (directed transport) and diffusion (19), advec

tion-reaction (45), or advection-reaction-diffusion (13), 

with similar limitations to those previously discussed. 

Here, we only consider reaction-diffusion, but we note 

that our method is generalizable to any process described 

by linear partial differential equations (PDEs). In addition, 

we account for photobleaching during imaging, i.e., bleach

ing of fluorophores due to their excitation during time-lapse 

imaging, following a few studies that inferred the rate of 
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photobleaching during imaging from experimental data 

(23,26,42).

Altogether, we aim at building a method to infer from 

FRAP the kinetic parameters of a process described by a re

action-diffusion equation from single experiments. We as

sume that experiments are noisy, that the initial bleaching 

profile is unknown, and that gradual photobleaching 

occurs due to imaging. We also account for the diffrac

tion-limited resolution of the optical setup. We have named 

our approach HiFRAP, for highly informed FRAP, because 

we maximize the use of available spatiotemporal informa

tion. In the following, we formulate the problem as one of 

cost minimization and propose a systematic method to solve 

it. We validate and optimize the approach with synthetic 

data. Finally, we present HiFRAP, the implementation of 

the approach as an ImageJ macro (available at https:// 

github.com/lorenzetti1996/HiFRAP_project), and illustrate 

it with experimental data on the transmembrane protein 

Mtl2p in fission yeast (46).

RESULTS AND DISCUSSION

General framework in the case of pure diffusion

FRAP experiments involve imaging at regular intervals a 

ROI containing the initially bleached (FRAPped) domain. 

The quantity of light emitted from the sample is propor

tional to the local concentration of fluorescent molecules, 

as long as saturation of the detectors is avoided. However, 

imaging the sample also results in photobleaching, so that 

fluorescence is attenuated by a constant factor after each im

age. The optical setup causes a spatial smoothing of the light 

pattern due to diffraction, which is characterized by the 

point-spread function of the microscope. The recorded 

signal results from three contributions. The first contribution 

is proportional to the concentration of fluorescent mole

cules, provided appropriate tuning of the excitation laser 

and detector gain; it contains a noisy part due to the statis

tical fluctuations of the number of these molecules in a small 

volume. The second contribution originates in technical 

noise, mostly associated with the detector. The third contri

bution is a background homogeneous signal associated with 

the detector. Accordingly, the recorded signal is a smoothed 

version of the field of fluorophore concentration, combined 

with noise and shifted by a background intensity. In 

HiFRAP, we account for point-spread function, photo

bleaching during imaging due to imaging, background in

tensity, and noise. The time-lapse data are assumed to be a 

temporal sequence of square images. The signal to be 

analyzed is sampled nt times after every time interval Δt, 

over nx × nx square pixels of side length Δx.

For the sake of simplicity, we introduce and validate 

HiFRAP assuming that the underlying dynamics is set by 

diffusion only. We generalize our approach to reaction- 

diffusion in applying HiFRAP to reaction-diffusion. We 

illustrate our approach in two dimensions, although the 

ImageJ/Python plugin is also implemented for diffusion 

along a line. The concentration of fluorophores c(x; y; t) is 

a function of spatial coordinates (x; y) and of time t. It is a 

solution of the diffusion equation

∂tc = Dtrue∇
2c; (1) 

where Dtrue is the true diffusion coefficient, ∂t is the partial 

derivative with respect to time, and ∇2 the Laplace operator. 

Our goal is to provide the best estimate Dest of the diffusion 

coefficient.

When photobleaching during imaging is not negligible, 

homogeneous regions of the sample (far from the 

FRAPped domain) show fluorescence decaying by a factor 

ρi = exp (− εti =Δt), where ε is the decay rate per image, 

ti the time at which the i-th image is collected, and Δt is 

the time interval between two consecutive images. The 

decay rate per image ε directly relates to the light dose 

received by the sample at each data acquisition. On many 

experimental setups, this quantity is fixed and does not 

depend on the time step Δt, which is our assumption 

throughout this article. In classical wide-field fluorescence 

microscopy, for example, most systems use a shuttered illu

mination setup in which the excitation light (e.g., from a 

mercury lamp) only reaches the sample during camera expo

sure. In confocal laser scanning microscopy or multiphoton 

microscopy, ε corresponds to the fluoresence decay induced 

by the light dose delivered during a single scan. The theoret

ical solution of the diffusion Eq. 1, c(x; y; ti) should be 

multiplied by this factor ρi. Photobleaching, however, does 

not affect the background intensity, IBG, which is considered 

to be constant in time and space. The background value IBG 

and the decay rate per image ε are either supposed to 

be known from regions distinct from the FRAPed area as 

explained in applying HiFRAP to experimental data, or in

ferred altogether with the dynamical parameters as dis

cussed in applying HiFRAP to reaction-diffusion.

Fig. 1 A shows an example of the synthetic data set gener

ated by solving analytically the diffusion Eq. 1. The ROI is a 

square of side length L. The FRAPped domain is a square of 

side length l = L=3 in which the fluorophores concentra

tion is set to 0 at t = 0. The first row shows the simulated 

spatial profile of the fluorophore concentration, which be

comes smoother and converges to the initial density over 

time, as could be expected. The second row shows a micro

scope-like time-lapse imaging, obtained from the simulated 

(true) concentration field by adding an uncorrelated 

Gaussian random variable corresponding to technical noise 

and applying a Gaussian spatial filtering corresponding to 

the point-spread function of the optical setup (see artificial 

data). In the following, we use such synthetic data to test 

our method and estimate the precision of the estimated 

diffusion coefficient, Dest, with respect to its true 

value, Dtrue.

Inference method for imperfect FRAP 
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A method to infer parameters from FRAP 

experiments

HiFRAP estimates kinetic parameters such as diffusion 

coefficient independently of any assumptions on the 

initial bleaching pattern. We use Ntot = nx × nx × nt 

(2D spatial × temporal) pixels from time-lapse imaging. 

We fit a theoretical model to those data by minimizing a 

cost function that quantifies the differences between 

observed data and theoretical solution. The model is built 

from the solution for (Eq. 1) and accounts for the point- 

spread function (see general framework in the case of pure 

A

B

FIGURE 1 Inferring the diffusion coefficient 

from simulated FRAP. (A) A square region of 

interest of side length L is monitored and a central 

square region of side length l = L=3 is FRAPped 

at t = 0. From top to bottom: raw artificial data, 

microscope-like synthetic data accounting for 

diffraction and technical noise, compressed syn

thetic data, concentration field fitted by HiFRAP, 

and residuals of the fit. From left to right: snap

shots from t = 0 to t = 2tD, where tD = l2

16Dtrue 

is taken as a unit of time. Gray- and colorscales 

indicate the concentration or signal intensity 

normalized by the drop in concentration ΔI at 

t = 0 in the FRAPped square. Dark (blue) to 

bright (red) indicate low to high concentration or 

signal. The decay rate per image due to photo

bleaching is set to ε = 0. For other parameters, 

default values are given in artificial data. 

(B) Cost function C (normalized by noise ampli

tude η) as a function of fitting diffusion coefficient 

D (normalized by its true value Dtrue), with a 

magnification of the neighborhood of the mini

mum of C in the inset. The cost function is mini

mal at Dest, which is close to Dtrue, up to an 

estimated error ΔDest. The total observation time 

T for this data set is T = 2tD and the time step 

Δt = 0:133tD.
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diffusion for more details). The estimated kinetic parame

ters are insensitive to the details of the point-spread function 

(29), provided its width μ exceeds the pixel size Δx, as 

shown in Fig. S4—a condition generally met in experi

ments. We therefore set μ = Δx by default and do not 

require experimental determination of the point-spread 

function.

The fit of the model to the data is performed iteratively in 

two steps, each minimizing the cost function: at each itera

tion, we first estimate the initial conditions for fixed kinetic 

parameters, and then update the kinetic parameters (in this 

case, the diffusion coefficient). To estimate the initial condi

tions, we use both spatial and temporal data and define the 

cost function as the sum of squared deviations between 

model predictions and the observed data. Because the 

PDE is linear with respect to the initial condition, the model 

response is also linear, and the cost function becomes 

quadratic in the initial condition. As a result, for fixed ki

netic parameters, the optimal initial condition can be ob

tained by solving a linear system of equations. Once the 

cost is minimized with respect to the initial conditions (for 

fixed kinetic parameters), it is normalized by the effective 

number of degrees of freedom (see fitting model 

parameters). The kinetic parameters are then updated by 

minimizing the normalized cost using the reflective trust re

gion algorithm (47), which is suited to bounded nonlinear 

least-squares problems.

Two important subtleties arise in the estimation of initial 

conditions at each iteration. First, the problem is inherently 

ill-posed: an infinite number of initial conditions can pro

duce the same observed data, since measurements are finite 

while the initial condition is a continuous field belonging to 

an infinite-dimensional space. To address this, we use pseu

doinversion to identify the components of the initial condi

tion that influence the observed data. This reveals that only a 

limited number of degrees of freedom in the initial pattern 

significantly affect the measurements. Second, pseudoinver

sion becomes computationally expensive for large data sets, 

as it involves operations on matrices of size Ntot × Ntot, 

which is prohibitive when Ntot > 105. To overcome this, 

we reduce the data size through compression, enabling im

plementation in an interactive ImageJ plugin. Specifically, 

we apply a discrete Fourier transform to compress the 

data in both spatial dimensions and retain only a subset of 

Fourier components. This reduces the data set to a manage

able size N = nq × nq × nt. As shown in optimizing 

experimental and analysis parameters, we find that values 

of nq between 5 and 9 are sufficient to obtain reliable esti

mates of the kinetic parameters. The resulting compressed 

data set, with N on the order of 103 to 104, allows efficient 

pseudoinversion to compute the optimal initial condition for 

the current estimate of the kinetic parameters (here the 

diffusion coefficient D).

To assess the uncertainty of the inferred parameter, we as

sume the cost around the minimum to be quadratic with 

respect to the fitting parameter and we estimate the curva

ture of the cost function around the minimum by computing 

the Hessian as a higher curvature indicates higher precision 

(Fig. 1 B), see error on parameter estimation and goodness 

of the fit for details. To evaluate the goodness of the fit we 

use two metrics. The adjusted coefficient of determination 

R2
adj is the classical coefficient of determination (R2) cor

rected using the effective number of degrees of freedom; 

it quantifies how well the model explains variations of 

the observed data, and ranges from 0 (no explanation) to 1 

(perfect fit). A limitation of the R2
adj is that its value may 

depend on the amplitude of noise and on the initial 

bleaching profile (see error on parameter estimation and 

goodness of the fit). Accordingly, the R2
adj should be used 

to compare two models applied to the same experiment, 

as used in applying HiFRAP to reaction-diffusion and 

applying HiFRAP to experimental data. The second metrics 

is not sensitive to the level of noise and the bleaching 

profile as it estimates whether the distribution of residuals 

is compatible with a Gaussian distribution using the 

Kolmogorov-Smirnov test. It returns a p value indicating 

whether to reject the null hypothesis that the residual distri

bution is compatible with a Gaussian. The only limitation is 

that it is computationally very slow because it involves an 

explicit calculation of all residuals in an appropriate basis, 

see error on parameter estimation and goodness of the fit.

HiFRAP is illustrated with synthetic data in Fig. 1. In (A), 

the two first rows are the true concentration of fluorophores 

and the simulated microscope-like images. For our analysis, 

we compress the microscope-like images (third row) to 

which we fit the model (fourth row), obtaining relatively 

small residuals (fifth row). In (B), we plot the cost function 

(after optimizing the initial condition) as a function of the 

fitting parameter D for the diffusion coefficient. The 

estimated diffusion coefficient Dest is defined as the value 

of D that minimizes the cost. We use the curvature of the 

cost function (inset in B) and noise amplitude to estimate 

the uncertainty ΔDest on the diffusion coefficient, see 

error on parameter estimation and goodness of the fit. 

Here, the coefficient of diffusion is well estimated, 

Dest=Dtrue = 0:992, and the relative uncertainty 

ΔDest=Dest = 0:01 is small. Finally, we test the validity of 

the model by examining whether residuals are normally 

distributed, which is implemented using the Kolmogorov- 

Smirnov tests (48) (see error on parameter estimation and 

goodness of the fit). Here, we find a p value of 0.57, showing 

that the diffusion model is a good model for these data, as 

could be expected. Moreover, the adjusted coefficient of 

determination has a value R2
adj = 0:989, although it is 

only meaningful when comparing two models applied to a 

single data set.

HiFRAP was also implemented for FRAP experiment 

along a line. In Fig. S6, we show an example of HiFRAP 

inference applied to synthetic data for a 1D diffusive sys

tem, with similar results to the 2D case.

Inference method for imperfect FRAP 
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Validation on artificial data

To thoroughly evaluate the robustness of the inference 

method, we applied HiFRAP to six collections of 

synthetic data sets of size nds, each corresponding to a 

different noise level. Within each collection, multiple data 

sets were generated using identical model parameters (as 

in Fig. 1) but with different realizations of the noise. For 

each synthetic data set, we estimated the diffusion coeffi

cient Dest and its error ΔDest. For each collection, we 

computed the average estimate 〈Dest〉 (the brackets 〈 〉 stand 

for average over the collection) and the empirical error 

ΔDemp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
nds

nds − 1
〈(Dest − Dtrue)

2〉
√

.

In Fig. 2, we plotted the estimated diffusion coefficient 

Dest and estimated uncertainty ΔDest as a function of noise 

strength. Fig. 2 A shows that the distribution of Dest is well 

centered around its true value Dtrue. The standard deviation 

of this distribution increases with the noise amplitude η and 

the coefficient of variation ΔDemp=Dest reaches values 

comparable with 1 for noise strengths η such that η=
ΔI ∼ 10− 2

̅̅̅̅̅̅̅̅
Ntot

√
≃ 4, where ΔI is the amplitude of the 

drop in intensity after initial photobleaching. Fig. 2 B 

shows that the estimated error ΔDest agrees well with the 

empirical error ΔDemp, except for the highest amplitude 

of noise, validating the estimation of error from a single 

data set. HiFRAP also works for diffusion along a line as 

shown with synthetic data in Fig. S6, although with less 

precision due to less spatial averaging (less pixels) than 

in 2D diffusion. Overall, HiFRAP provides good estimates 

of the diffusion coefficient and of its error from a single 

experiment.

Optimizing experimental and analysis parameters

To optimize the estimates of kinetic parameters (here diffu

sion coefficient), we aim at tuning parameters that are 

accessible in experiments—side length of FRAPed region 

l, number of time frames nt, and delay between frames 

Δt—and in analysis—number of modes nq kept for the 

compression. We implicitly assume the space resolution, 

Δx, to be constrained by the microscope used and the 

side length of the ROI, L, to be constrained by the size 

of the system and its spatial variations—the ROI should 

be as big as possible while sufficiently homogeneous. 

The bleaching size l and the number of modes nq influence 

the amount of useful spatial information. To be optimal, the 

size of the FRAPped region l should be large enough for 

the perturbation in fluorescence associated with FRAP to 

be of significant weight compared with noise, whereas l 
comparable with L leads to a loss of spatial information 

contained in the periphery of the FRAPped region. We 

found that the error on estimation of the diffusion coeffi

cient is minimal roughly around l ∼ L=3 in the case of a 

square FRAPped region. Concerning the number of modes 

kept in the discrete Fourier transform, fair estimates are 

reached for nq ≥ 5 (Fig. S2). Accordingly, we took 

l = L=3 and nq = 9 in all our analyses, except when 

specified otherwise.
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FIGURE 2 Validation of HiFRAP on a collection of synthetic data. (A) Estimated diffusion coefficient Dest; B estimated uncertainty ΔDest and empirical 

error ΔDemp. The quantities are all normalized by the true diffusion constant Dtrue and plotted as a function of the normalized noise amplitude η= ΔI, where η 
is noise amplitude, ΔI is the drop-off in intensity after initial photobleaching. Violins represent distributions of Dest and ΔDest while the ticks highlight 

average and extreme values. The dashed gray line in (A) represents the reference value Dest=Dtrue = 1, while the dashed blue line in (B) corresponds to 

the empirical error ΔDemp. The number of realizations is 200 for each value of noise strength and the decay rate per image due to photobleaching is set 

to ε = 0.
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The time resolution of experiments may be constrained 

by the sample imaged, for instance, when there is phototox

icity. Here, we only consider constraints due to the optical 

setup, which are mostly associated with photobleaching dur

ing imaging. The intensity of the observed signal decays 

with the number of images acquired, proportionally to 

exp [ − ε(nt − 1)], so that the signal quickly vanishes 

when nt increases beyond 1=ε + 1. We therefore choose nt 

to be the integer part of 1=ε + 1. Concerning the choice of 

the time step Δt between two images, we note that the tem

poral decay rate due to photobleaching is ε=Δt, while the 

relaxation (to equilibrium) rate due to diffusion is the in

verse of the diffusion time tD = l2=(16D)—defined as 

the time at which the standard deviation of the position of 

a Brownian particle reaches half the side length of the 

FRAPed region. If the time step Δt is too low, then fluores

cence disappears before diffusion can be observed, whereas 

if the time step Δt is too high, most of the images are taken 

after diffusion has homogenized concentrations and these 

images are not informative. As a consequence, we expect 

the optimal delay between images to correspond to ε=
Δt ∼ 1=tD. To further test this conclusion, we plotted in 

Fig. 3 the normalized empirical error ΔDemp=Demp as func

tion of dimensionless delay Δt=(tDε). As expected, the plot 

shows that the error ΔDemp has a minimum. This minimum 

occurs when Δt ∼ 10tDε, a value that we used in the 

remainder of this study.

The decay rate ε can also be reduced by decreasing the 

light dose delivered to the sample. In wide-field microscopy, 

this is typically achieved by modifying light intensity or the 

exposure time. In confocal microscopy, it can be controlled 

by adjusting the laser power or scanning speed. However, 

this decreased lighting reduces fluorescence, which deterio

rates the signal/noise ratio at the detector. Altogether, it is 

unclear how changing the lighting conditions may affect 

the precision of HiFRAP.

Benchmarking HiFRAP

To test the efficiency of HiFRAP, we compared it with clas

sical methods to obtain diffusion coefficient. Beforehand, 

we stress the versatility of HiFRAP because it makes no 

assumption on FRAP patterns or on boundary conditions, 

which is not the case of classical approaches. This is illus

trated in Fig. S3, where the region FRAPped is axisym

metric with a Gaussian profile, X shaped or E shaped. For 

the comparison with other methods, which assume the 

bleaching pattern to be known, we considered a square 

FRAPped domain. Benchmarking was performed with 

respect to two classical approaches, as described in (6,20). 

The two approaches are based on determining the bleaching 

profile by fitting the postbleach image, and then estimating 

the diffusion coefficient by analyzing the recovery curve, 

i.e., the temporal variations of the signal average over 

the FRAPped region. For the first step, we followed (6) 

and modeled the square FRAPped profile as a 2D sharp 

function f (x; y) = H(l =2 − x +x0)H(x − x0 +l =2)H(l =
2 − y+y0)H(y − y0 +l =2) (with H the Heaviside function 

H(u) = 0 if u < 0 and H(u) = 1 if u > 0), smoothed to ac

count for the point-spread function of the microscope. 

Accordingly the postbleach profile is parametrized by its 

size l, the position of its center (x0; y0), and the smoothing 

length. In a second step the two approaches differ. In the 

relaxation time-based method, the half-recovery time τ1=2 

is estimated as the time at which the intensity has recovered 

half of its initial value in the FRAPped region (20). The 

diffusion coefficient is then computed using the theoretical 

relation Dest = 0:923 l2

16τ1=2 
valid for a square FRAPped re

gion. In the temporal fit-based method, the diffusion coeffi

cient is obtained by fitting the recovery curve to the 

theoretical curve for a FRAPped region with side length 

and smoothing length, as obtained in the first step. The final 

formula is found in (6).

As the three methods retrieve the true diffusion coeffi

cient on average, we compared their respective precisions. 

The empirical errors on diffusion coefficient are shown in 

Fig. 4 for different amplitudes of noise. The errors are 

computed for 200 artificial data sets for each noise 

strength. As could be expected, the empirical error in

creases with the noise strength. HiFRAP performs better 

than the two other approaches, especially at lower noise 

values, although HiFRAP does not make any assumption 

on the FRAPped bleaching profile. We ascribe the perfor

mance of HiFRAP to the fitting of spatiotemporal 

data instead of temporal data in other approaches. This 

comes with a higher computational cost for our approach. 

HiFRAP requires a few seconds to be run, depending 

on the number of Fourier modes nq and temporal points 

nt (see Fig. S2), whereas classical methods are 

almost instantaneous because models are fit to only nt 

data points.
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FIGURE 3 Optimization of imaging time step Δt. The empirical error 

ΔDemp, normalized by the true diffusion coefficient Dtrue, is represented 

as a function of relaxation time Δt=ε due to photobleaching during imaging, 

normalized by the diffusive timescale tD = l2=Dtrue=16. The empirical er

ror was computed as ΔDemp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
nds

nds − 1
〈(Dest − Dtrue)

2〉
√

from the esti

mated values Dest and true value Dtrue of the diffusion coefficient from 

nds = 200 artificial data sets. Error bars represent the estimated standard 

error of the empirical error.
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Applying HiFRAP to reaction-diffusion

Our method can be generalized to infer kinetic parameters for 

more complex dynamics. Besides diffusion, molecules may be 

synthesized, degraded, or undergo other chemical reactions. In 

addition, membrane-localized proteins or lipids may be exo

cytosed or endocytosed. As long as the changes in concentra

tion are not too large, the dynamics of one chemical species 

can be modeled by a linear diffusion-reaction equation,

∂c

∂t
= Dtrue∇

2c + αtrue − βtruec; (2) 

where Dtrue is still the diffusion coefficient, while αtrue and βtrue 

represent source rate and exchange rate, respectively, both 

assumed to be constant. The interpretation of these reaction 

terms depends on context. For instance, αtrue may correspond 

to a synthesis rate and βtrue to a degradation rate. In the case of a 

membrane-localized molecule, αtrue and βtrue may correspond 

to the rates of exocytosis and endocytosis, respectively, of this 

molecule. To extend HiFRAP to reaction-diffusion, we fol

lowed the same approach as in a method to infer parameters 

from FRAP experiments with the difference that the cost to 

minimize now depends on multiple parameters, D, α, β, and/ 

or ε. The minimization with respect to D, β, and ε is performed 

numerically using the reflective trust region algorithm, while α 

and IBG are computed analytically (see inference in the case of 

reaction-diffusion with photobleaching for details). The imag

ing step can be optimized as in optimizing experimental 

and analysis parameters for a weak laser beam. Eq. 2

involves two characteristic times, the diffusion time tD =

l2=(16Dtrue), and the exchange time tβ = log(2)=β. The 

typical recovery time tr for the combined dynamics is expected 

to be of the order of 1=tr = 1=tD + 1=tβ. Accordingly, the 

optimal time step can be taken as Δt ∼ εtr=10.

We generated artificial reaction-diffusion data with the 

same initial square FRAP profile as before, as described 

in artificial data. Fig. 5 shows the inference of the parameters 

of Eq. 2 from these data using HiFRAP. We first assumed that 

the stationary solution cs is perfectly known a priori, from the 

prebleaching images, for instance. When cs is known, the cost 

function depends only on D and β (see inference in the case of 

reaction-diffusion with photobleaching). In Fig. 5 A, we show 

an example of the contours of the cost function. The estimate 

on α may be obtained from the relation αest = csβest. To 

explore the behavior of our method, we would a priori need 

to vary Dtrue, αtrue, and βtrue. However, changing the ratio 

αtrue=βtrue only changes the stationary concentration and so 

does not affect the uncertainty of the different estimates. 

Changing the recovery time tr does not significantly affect 

the precision of the method, since we adapt the time resolu

tion of the experiment accordingly. We therefore varied the 

ratio tβ=tD in Fig. 5, B and C, keeping αtrue=βtrue and tr con

stant. As could be expected (39), the uncertainty on the diffu

sion coefficient becomes high when the fluorophore 

dynamics is dominated by reaction and, reciprocally, the un

certainty on the relaxation coefficient becomes high when the 

dynamics is dominated by diffusion. We note that, like in the 

pure diffusion case, the curvature of the cost function yields a 

good estimate of the error on parameters (see Fig. S1). 

Finally, we assessed the quality of the fit by comparing it 

with fits to diffusion only (assuming αtrue = βtrue = 0) and 

reaction-only models (assuming Dtrue = 0) using the 

adjusted coefficient of determination R2
adj. Fig. 5 D shows 

that R2
adj is always much larger for the reaction-diffusion 

model, meaning that it better explains the data, except for 

low or high ratios of reaction to diffusion times, for which 

the reaction-diffusion model is almost equivalent to one of 

the two simplest models.

When the values of rate of photobleaching during imag

ing, stationary concentration and background are unknown, 

they can be estimated together with the kinetic parameters 

using optimization in 5D space. Fig. 6 shows the results of 

HiFRAP in this case. Our estimates remain fairly good. 

The errors on diffusion and reaction coefficients behave 

like in the preceding case, although they are bigger here 

owing to the higher dimensionality (5 instead of 2). The er

rors on the source rate, bleaching rate, and background in

crease when the fluorophore dynamics is dominated by 

diffusion, similar to the exchange rate because all three pa

rameters effectively relate to reactions.

FIGURE 4 Benchmarking of HiFRAP. Empirical error ΔDemp as func

tion of the noise strength η, the noise amplitude, normalized in terms of 

signal drop upon bleaching ΔI. The lines and relaxation time-based (green), 

temporal-fit-based (orange), and HiFRAP (blue) methods. Empirical error 

was computed as ΔDemp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
nds

nds − 1
〈(Dest − Dtrue)

2〉
√

from estimated 

values Dest and true value Dtrue of the diffusion coefficient from nds =

200 number of data sets. . Error bars represent the estimated standard error 

of the empirical error.
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Applying HiFRAP to experimental data

We implemented HiFRAP as an ImageJ macro that 

wraps Python scripts (available on https://github.com/ 

lorenzetti1996/HiFRAP_project). Here, we illustrate the 

macro with experiments in fission yeast. We considered 

a putative mechanosensitive transmembrane protein, 

Mtl2p, which is homogeneously distributed around the 

cell surface (46). We prepared and imaged cells as detailed 

in experiments. Given that Mtl2p has very low cytoplasmic 

B

C D

A

FIGURE 5 HiFRAP applied to the estimation of diffusion and reaction rates knowing the pre-FRAP concentration field and the rate of photobleaching 

during imaging. (A) Contour plot of the normalized cost function (log10[C =η2], with η the amplitude of the noise) as a function of the normalized fitting 

parameters D=Dtrue and β=βtrue, while the source term α is constrained to be α = βcs, with cs the stationary concentration known from prebleaching images. 

The colorscale is shown on the right, with blue and yellow corresponding to low and high cost, respectively. The light blue point indicates the minimum of the 

cost function; its coordinates yield the estimates Dest and βest. (B and C) Estimated dynamical parameters Dest and βest as function of the reaction-diffusion 

time ratio tβ=tD = 16 log(2)=l2Dtrue=βtrue keeping the signal relaxation time tr = (1=tβ + 1=tD)
− 1

= εΔt=7 constant. Violin plots show the distribution of 

the estimates and horizontal ticks indicate the maximum, the average, and the minimum of the distribution. The dashed gray line represents the reference 

value at which the estimated parameter is equal to the true parameter of the system. Here, the stationary concentration, cs, is assumed to be known from the 

average pre-FRAP concentration field, so that αest = csβest. The rate of photobleaching during imaging, ε, is supposed to be known from a control area. The 

number of data sets analyzed is 200. (D) Adjusted coefficient of determination, R2
adj, for three different fits, diffusion only, reaction only, and reaction-diffu

sion, as a function of reaction-diffusion time ratio. The error bar represents the mean and the standard deviation of the distribution.
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FIGURE 6 HiFRAP applied to diffusion-reaction when pre-FRAP concentration field and rate of photobleaching during imaging are unknown. Distribu

tions of the estimated parameters (normalized by their true values) as a function of the reaction-diffusion time ratio tβ=tD for 200 artificial data sets: (A) 

diffusion coefficient Dest, (B) exchange rate βest , (C) source rate αest, and (D) rate of photobleaching during imaging ε and E background signal intensity 

IBG. Violin plots show the distributions. The horizontal ticks stand for the maximum, the average, and the minimum of the distributions. The dashed 

gray line represents the reference value at which the estimated parameters is equal to the true value of the system.
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concentration, we hypothesized that, over the timescale of 

experiments, Mtl2p diffuses along the surface of the cell, 

and we aimed at testing this hypothesis and at estimating 

the diffusion coefficient.

Building upon preceding sections, we implemented 

the HiFRAP ImageJ macro for three models (diffusion 

only, reaction-diffusion, or reaction only) and for various 

experimental options. These options include the poten

tial use of additional information to reduce errors on the 

estimation of parameters, see improving parameters 

estimation using extra-information for details. In partic

ular, HiFRAP enables to select two regions outside the 

ROI (contains the FRAPped domain): a region free from 

fluorescent reporters (background ROI)—used to estimate 

the background value IBG by averaging, and an unFRAP

ped region (control ROI)—used to estimate the rate of 

photobleaching during imaging ε. Fig. 7 A shows three 

example ROIs for a 2D FRAP geometry. The ROIs were 

chosen as large as possible to maximize the amount of in

formation analyzed, within the constraint of being not too 

close to cell edges (as viewed from the top) or to image 

edges, to avoid the effects of, respectively, cell curvature 

and optical distortion on signal intensity. Potential addi

tional information also includes prebleaching images, 

which yield stationary molecule concentration cs by aver

aging. In cases where FRAP is performed in a 1D geom

etry, the user selects polylines instead of rectangular 

regions to define the control and FRAP areas. These poly

lines are then straightened using ImageJ’s built-in algo

rithm to create a linear representation: a user-defined 

width is used to extract and average pixel intensities 

perpendicular to the path, generating a 1D intensity profile 

for each image.

In FRAP experiments on Mtl2p-GFP, typical estimates 

are IBG≈100 [A:U:] for the background level (from the back

ground ROI), cs≈30 [A:U:] for the stationary concentration 

(using one prebleaching image), and ε ∼ 10− 2 for the pho

tobleaching (using the control ROI). In Fig. 7, B and C we 

show the same plots as in Fig. 1 for the estimation of the 

diffusion coefficient from one FRAP experiment. The cost 

function presents a single minimum (C) and the correspond

ing best fit to compressed experimental data is shown in the 

third row of (B).

We optimized experimental parameters following 

optimizing experimental and analysis parameters. The size 

of the ROI being limited by cell width, we chose to use 

square ROIs of side length ∼ 1:5 μm and FRAPped square 

regions of side length l ∼ 0:5 μm. In practice, we found 

that the initial bleaching profile was imperfect; the reduction 

in signal intensity was inhomogeneous and did not occur 

over a perfect square (see t = 0 in Fig. 7 B). This may be 

caused by different factors such as the small size of the 

FRAPped region, laser imprecision, or fluctuations in fluo

rophore concentration. To adjust the imaging time step Δt, 

we first estimated the order of magnitude of the diffusion co

efficient and of photobleaching rate per image by applying 

HiFRAP to a preliminary experiment. We found ε ∼ 10− 2 

and Dest ∼ 104 μm2s− 1. Then, to optimize our analysis, 

we chose Δt = (5 =8) εl2=D ∼ 10 s, and nt =

1=ε ≃ 100. Finally, to limit the computational cost, we 

used nq = 9 modes for the compression.

Following parameter adjustment, each of the 18 analyzed 

cells was FRAPped once. We fitted experimental data to 

each of the three models: diffusion only, reaction-diffusion, 

and reaction only. Estimated parameters are given in 

Table 1. To assess whether the dynamics of Mtl2p-GFP is 

dominated by diffusion or by reaction, we computed the 

adjusted coefficient of determination R2
adj, as shown in 

Fig. 7 D. In all the 18 experiments, the diffusion model 

has a higher R2
adj compared with the reaction model, indi

cating that diffusion contributes more to Mtl2p dynamics 

at the experimental timescale; the diffusion-reaction model 

has slightly higher R2
adj than the diffusion only model, sug

gesting that the two are almost equally good at explaining 

the data. Consistently, the Kolmogorov-Smirnov test rejects 

the reaction model (the p value is greater than 0.05 for 60% 

of the cases, well below the threshold of 95%) and tends to 

reject the reaction-diffusion model. In addition, when 

considering a reaction-diffusion model, we find an average 

loss rate that is not positive, which is not physically accept

able because it means, for instance, that the rate of detach

ment of Mtl2p from the membrane is negative. For this 

reason, we conclude that pure diffusion better explains 

experimental data.

Considering a diffusion model, we found an average value 

of the diffusion coefficient, 〈Dest〉 = 1:93 10− 4μm2s− 1, 

lower than diffusion coefficients of proteins in animal cell 

membranes (2), but in agreement with the order of magnitude 

10− 4 − 10− 2μm2s− 1 for membrane-localized proteins in 

budding yeast or in fission yeast (12,49–52). Such low value 

of surface diffusion coefficient is likely due to the presence 

of a cell wall (53). We also note that the empirical error— 

i.e., the standard deviation of the diffusion coefficient over 

all experiments—ΔDemp = 1:40 10− 4μm2s− 1, is much 

greater than the estimated error in single experiments 

〈ΔDest〉 = 0:07 10− 4 μm2s− 1. This reflects biological cell- 

to-cell variability in diffusion, which has already been 

observed in cultured animal cells based on single-particle 

tracking (54).

CONCLUSION

We have developed HiFRAP, a method to infer reaction (or 

exchange)-diffusion kinetic parameters from FRAP with 

imperfect conditions, and we have implemented it as a 

Fiji plugin. HiFRAP leverages the full spatiotemporal infor

mation contained in the time-lapse sequence to derive ki

netic parameters, errors on these parameters, and a test of 

model validity so as to select which model better explains 

experimental observations.
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HiFRAP combines all useful features that have been 

developed separately in previous work. HiFRAP makes 

it possible to infer several parameters from a single 

FRAP experiment (6,13,19,36–38,40–45), as long as sys

tem dynamics is sufficiently sensitive to these parameters 

(39). We make no assumption on the bleaching profile 

(21–24,27,42,44) nor on boundary conditions; HiFRAP 

is thus well-suited experimental conditions in which it is 

difficult to bleach uniformly the target region or to be 

far from boundaries. Moreover, due to its versatility, 

our method is applicable to all the FRAP variants dis

cussed (spot, strip, and iFRAP), even though the source 

A

DC

B

FIGURE 7 Inferring the diffusion coefficient from experimental data. (A) Fluorescence microscopy image of a fission yeast cell expressing Mlt2- 

GFP. The cell was bleached inside a region to the left of the cell center. Three regions were selected with Fiji. The square is the region of interest 

that contains the FRAPped region and has side length = 1:45 μm. The top rectangle is the control ROI, used to estimate rate of photobleaching during 

imaging. The bottom rectangle is the background ROI, used to estimate background signal intensity. (B) From experimental signal to fit; two-dimen

sional data shown at four time points—time in seconds is indicated above the first row, t = 0 follows initial bleaching. From top to bottom: exper

imental data inside the ROI; compressed experimental data; fit to compressed experimental data; residuals of the fit. The grayscale and colorscale are 

shown on the right. (C) Corresponding cost function C (normalized by its minimum) as a function of fitting parameter D (normalized by the estimated 

diffusion coefficient Dest) for the diffusion coefficient; the inset is a zoom-in around the minimum with the cost function in the arbitrary unit of the 

signal and the diffusion values in μm2=s. (D) Assessing the goodness of the diffusion model by comparing it with reaction-diffusion and to reaction- 

only models. Top: adjusted coefficient of determination R2
adj normalized using its value for the diffusion model; each line corresponds to one of the 18 

experiments (one color per experiment). Kolmogorov test (bottom): each bar indicates the fraction of cases in which the Kolmogorov test was above the 

0.05 value; the red dashed line indicates the level below which the model should be rejected; error bars correspond the error in sampling a binomial 

distribution.
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term for the reaction is zero in the case of the photocon

version configuration. Furthermore, HiFRAP accounts for 

intrinsic photobleaching associated with repeated imag

ing, either based on a control region or on inference of 

photobleaching rate (23,26,42). Finally, HiFRAP inte

grates three features that do not seem to have been imple

mented before: errors on parameter estimation for a single 

experiment; diffraction in the microscopy setup— 

although the precise characteristics of the point-spread 

function are not required as long as its width is larger 

than pixel size; test of model goodness. We ran HiFRAP 

against classical benchmarks and found that HiFRAP pro

vides lower or equal errors despite being more general. 

Although relying on advanced inference techniques, 

HiFRAP remains accessible: a user-friendly macro allows 

experimentalists to perform the analysis with only a min

imal understanding of the underlying theory (such as the 

number of compression modes), which are the only 

user-defined inputs required.

However, HiFRAP has a few limitations. First of all, 

HiFRAP is relatively slow (execution time of a few seconds 

with standard parameters and standard computer). Most 

available methods do not explicitly deal with noise. We 

were led to make the simplifying assumption that noise is 

homogeneous and stationary, which is not necessarily true 

(42,55). For example, the amplitude of the shot noise asso

ciated with photon counting is proportional to the square 

root of the signal. Such spatiotemporal variation of noise 

would likely affect error estimation but not parameter 

estimation.

In principle, HiFRAP can be adapted to FRAP variants, 

involving, for instance, continuous photobleaching of a re

gion or photoconversion of a fluorophore (5), and to the 

FRAP analysis of other types of dynamics, such as advec

tion by active transport (13,45), subdiffusion (29,30), multi

ple-species (13,39,42), and nonflat geometries (9,28). 

HiFRAP assumes linearity of underlying PDEs, but this is 

not a strong limitation as the dynamics becomes quickly 

linear upon return of the system to its equilibrium state. 

Currently, HiFRAP cannot handle 3D geometries, multispe

cies models, or systems involving advection phenomena and 

it assumes an image acquisition time much smaller than 

molecule dynamics. However, future developments may 

address these limitations, enabling broader applicability of 

the method.

Our method is actually not restricted to FRAP and could 

be used for inference of parameters for any linear PDE 

based on the effects of a perturbation on the system. We 

can therefore expect applicability of our method to capillary 

isoelectric focusing (56) or to optogenetics (57). Overall, 

our approach can be considered as a good alternative to 

machine learning approaches since it does not require 

training (58).

MATERIALS AND METHODS

Data sampling and compression

Here and elsewhere, we present our methodology for a 2D system, 

which also applies to a 1D system unless specified. The notations used 

troughout this section are summurized in Table 2. We consider a spatio

temporal signal collected at discrete positions (X(1);X(2)) such that 

X(1) = X(2) = [0;Δx;…; (nx − 1)Δx] and times T = [0; Δt; …; (nt −

1)Δt], where Δx is the spatial mesh size and Δt is the time step, nx × nx 

is the number of pixels and nt the number of time frames. We vectorize the 

measurements by arranging them into a unique vector {IDATA
k }

Ntot

k = 1 composed 

of Ntot = n2
xnt elements, where the index k = a + bnx + cn2

x is associated to 

the space-time triplet (x
(1)

k ;x
(2)

k ; tk) = (X(1)
a ;X

(2)

b ;Tc), X
(p)
a and Ta being the 

a-th components of the vectors X(p) and T, respectively. We assume that the 

empirical data correspond to a theoretical spatiotemporal signal c(x; y; t) that 

can be sampled into a theoretical data vector through the sampling operator 

S : c(x; t) ↤ {ITH
k }

Ntot

k = 1, defined as ITH
a+bnx+cn2

x
= c(X(1)

a ;X
(2)

b ;Tc).

To save data storage space and computational time, we compress these 

vectors into smaller vectors made of N elements (N < Ntot), defining the 

compression operator C : {Ik}
Ntot

k = 1↤ {Yi}
N
i= 1. In practice, we chose to 

compress in the space domain because nx × nx is in general much greater 

than nt: We keep nq spatial Fourier coefficient per axis, so that N =

n2
qnt. Accordingly, we define the compression operator as

C : Yi =
∑N

k = 1

Fi;kδti=Δt;tk=ΔtIk (3) 

where δi;k is Kronecker’s delta and the Fourier matrix has elements 

Fi;k = ~F(q
(1)
i ; x

(1)

k )~F(q
(2)
i ; x

(2)

k ) with

~F
(

q
(p)

i ; x
(p)

k

)
=

1
̅̅̅̅̅
nx

√

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
̅̅̅
2

√ cos
(

q
(p)

i x
(p)

k

)
if q

(p)

i < 0

1 if q
(p)

i = 0

1
̅̅̅
2

√ sin
(

q
(p)

i x
(p)

k

)
if q

(p)

i > 0

(4) 

TABLE 1 Estimated parameters (mean 5 standard deviation over 18 experiments) and associated errors for each model

Parameter 〈Dest〉 〈σest
D 〉 〈βest〉 〈σest

β 〉 〈αest〉 〈σest
α 〉

Unit 10− 4μm2=s 10− 4μm2=s 10− 4s− 1 10− 4s− 1 AUs− 1 AUs− 1

Diffusion 1:9351:40 0:0750:06 – – – –

Reaction-diffusion 3:353:2 0:250:2 − 10516 251 − 0:1850:29 0:0350:02

Reaction – – 9:454:5 0:550:2 0:16650:100 0:00850:003

From left to right: diffusion coefficient Dest, error on diffusion σest
D , exchange rate β, error on loss σest

β , source rate αest (AU stands for arbitrary unit), and error 

on source σest
α . From top to bottom: reaction only, reaction-diffusion, and reaction-only models.
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where the index i is associated to the Fourier-temporal vectorization with 

the Fourier vector of each axis spanning the value Q(1) = Q(2) =

πΔx
nx − 1

[
−

nq − 1

2
;…;0;…;

nq − 1

2

]

The results in Fig. S2 show that, as long as nq ≥ 3, compression affects 

neither the accuracy—how close the mean of the distribution of the esti

mated parameter is to the true value—nor the precision of the estima

tion—the variance of the estimated parameter distribution. Typically, 

nq ≥ 5 is sufficient to reach 80% of the precision that would be obtained 

without compression.

Inferring dynamical parameters

Problem formulation

In this section and the following ones, we detail the method used to estimate 

the dynamical parameters. To help the reader, we gathered all mathematical 

notations introduced through the inference procedure in Table 3. Our aim is 

to estimate the vector ~θ = {θ1;…; θn} of the parameters of a linear PDE 

from an empirical signal {YDATA
i }

N
i= 1. We consider system dynamics after 

a linear perturbation w(x). The theoretical, noiseless solution to the PDE 

takes the form

YTH
i

{
~θ;w

}
=

∫

R2

Gi

(
~θ; y
)

w(y)dy + hi

(
~θ
)
; (5) 

where the linear operator G (related to Green’s function) and the shift vector 

h are specific to the PDE. As we will see later, it is also possible to include 

in Gi the effect of any linear operation on the signal, such as spatial filtering 

by the optical setup.

We consider experimental/technical noise, defined as ei = YDATA
i −

YTH
i (~θtrue; wtrue), where θtrue and wtrue are the true parameters and initial 

condition. We assume that the ei are uncorrelated, i.e., 〈eiej〉 = δi;jη2, 

where δi;j is the Kronecker delta and η the unknown noise amplitude.

Fitting the initial condition at fixed model parameters

Under these hypotheses, we can estimate the vector ~θ resorting to the least- 

squares method, which consists in minimizing a cost that quantifies the dif

ferences between observed data set and theoretical solution YDATA
i −

YTH
i (θ;w). Since the initial profile w is not known, at any given θ, we first 

estimate it by minimizing the cost Ctot =
∑N

i= 1 (Y
DATA
i − YTH

i (θ;w))2 

with respect to w. By exploiting the fact that the theoretical solution (5) 

is linear in w, this operation can be performed analytically, yielding

min
w

∑N

i = 1

⎡

⎢
⎣YDATA

i − hi

(
~θ
)
−

∫

R2

Gi

(
~θ; y
)

w(y)dy

⎤

⎥
⎦

2 

=
∑N

i = 1

[
ri

(
~θ
)]2

(6) 

where the residual vector r, which represents the difference between the 

data vector and the constrained fit at fixed θ, is given by

r
(
~θ
)

= λK+
(
~θ
)(

YDATA − h
(
~θ
))
: (7) 

K+ is the pseudoinverse of the kernel matrix K (59)

Ki;j =

∫

R2

dyGi

(
~θ; y
)
Gj

(
~θ; y
)
: (8) 

We use the pseudoinverse K+,

K+ = (K + λId)
− 1

(9) 

because the kernel matrix K is not definite positive. The small positive num

ber λ ensures that the pseudoinverse is well defined. We take λ = Nσ0ϵ, using 

the largest eigenvalue σ0 of the kernel matrix K and machine precision ϵ (60), 

yielding typical values of λ(~θ) in the range 10− 11 to 10− 12.

Kernel reduction

To accelerate the computation of the pseudoinverse in Eq. 7, we take advan

tage of the fact that multidimensional problems can often be reformulated 

in terms of smaller matrices that describe the structure of the kernel along 

each spatial direction. As we will see in inference in the case of pure 

diffusion without photobleaching for diffusion and inference in the case 

of reaction-diffusion with photobleaching for reaction-diffusion, the kernel 

matrix can be factorized as

Ki;j = κ
(

q
(1)

i ; ti; q
(1)

j ; tj

)
κ
(

q
(2)

i ; ti; q
(2)

j ; tj

)
(10) 

TABLE 2 Notations for sampling and preprocessing

nx Number of pixels per axis

nt number of time frames (of 2D images)

Δx pixel size

Δt time interval between two frames

c(x; t) concentration field (function of space and time)

IDATA
k

raw data vector

ITH
k

noiseless theoretical data vector

YDATA
i

preprocessed (compressed) data vector

YTH
i

noiseless theoretical preprocessed data vector

S sampling operator, maps concentration field onto 

raw data vector

C compression operator, maps raw data vector onto 

preprocessed vector

F spatial Fourier transform matrix

nq number of spatial modes kept per axis after 

compression

TABLE 3 Notations for inference

θ
→

Vector of kinetic parameters to be inferred

θ
→

true
vector of true values of kinetic parameters

θ
→

est
vector of estimated kinetic parameters

w spatial perturbation

Gw + h the linear operator G and the shift vector h

ei noisy part of the preprocessed vector

η amplitude of the noise

K kernel operator

K+ pseudoinverse of the kernel operator

λ small positive number to ensure matrix inversion or 

threshold on eigenvalues

URUT
R

reduced kernel by SVD truncation along each axis

Neff trace of [λK+]
2 

representing the effective degrees of 

freeedom

Φ null matrix associated with kernel operator

r residual between data and theory vector after fitting 

the initial condition at θ
→

fixed

~r projected residual in the null space generated by Φ
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The values of the function κ at (q
(l)
i ; ti; q

(l)
j ; tj), with l ∈ {1; 2}, are 

collected in a matrix κ(l) of dimension nqnt × nqnt, whose u-th row and 

v-th column are mapped by the relations u = a + cnq; v = a′ + c′nq for 

κ(1) and u = b + cnq, v = b′ + c′nq for κ(2), where a, b, c are associated 

to the triplet (q
(1)

i ; q
(2)

i ; ti) = (Q(1)
a ;Q

(2)

b ;Tc) and a′, b′, c′ to 

(q
(1)

j ; q
(2)

j ; tj) = (Q
(1)

a′ ;Q
(2)

b′ ;Tc′ ) as previously defined in data sampling 

and compression.

Using singular value decomposition (SVD)-based truncation (61), we 

approximate the matrices κ(l) by considering the nK eigenvalues σk , k ∈

{0;::;nK − 1}, larger than the same threshold λ = nqntϵσ0 as for the pseu

doinverse and the associated eigenvectors Uk(q
(l)
i ; ti). This operation yields 

an approximated kernel

Ki;j ≈
∑nK

k;k′ = 0

Uk

(
q
(1)

i ; ti

)
Uk′

(
q
(2)

i ; ti

)
σkσ′

kUk

(
q
(1)

j ; tj

)

Uk′

(
q
(2)

j ; tj

)
=

∑n
2
K

k′′ = 0

[UR]i;k′′ [UR]j;k′′

(11) 

where UR is a matrix of size n2
qnt × n2

k , with components [UR]i;k′′ =

Uk(q
(1)
i ; ti)Uk′ (q

(2)
i ; ti)

̅̅̅̅̅̅̅̅̅
σkσ′

k

√
with k′′ = k + nkk′. Under this approxima

tion, exploiting the Woodbury matrix identity, the pseudoinverse takes 

the form

λK+ ≈ Id −
[
UR

(
UT

RUR + λId
)− 1

UT
R

]
; (12) 

which is much faster to compute compared with its full expression since 

the size of the matrix UT
RUR + λId is smaller than the size of K+ λId by a 

factor of ∼ 10 with the parameters used here. We note that, because of the 

definition of λ, the errors induced by the approximations above are of the 

order of machine precision and so are negligible. In practice, we use this 

approximation of the pseudoinverse K+ for a 2D system, but not in dimen

sion 1 because the computational gain is limited, in which case we directly 

compute the pseudoinverse of the kernel matrix as given by Eq. 9.

Fitting model parameters

The next step would be to minimize the sum of the squared residuals (Eq. 7) 

with respect to ~θ. However, the average contribution of the noise vector 

{ei}
N
i= 0 to the residuals {ri}

N
i= 0 scales with the effective degrees of freedom 

Neff (~θ) = λ2
∑N

j= 0[K
+]

2
j;j associated with the fit of the initial condition 

(62) whose value varies according to ~θ. For this reason, to avoid biasing 

the inference toward values of ~θ that require stronger constraints for the 

initial condition fit (indicated by a lower number of effective degrees of 

freedom), we normalize the sum of residuals squared in Eq. 7 by Neff (~θ). 
Combining this normalization with Eqs. 7 and 9, we obtain the estimation 

of the parameter vector by minimizing the cost C(~θ) as

~θest = arg min
~θ

C
(
~θ
)

with C
(
~θ
)

= 1
Neff

∑N

i = 0

(
∑N

j = 0

K+
i;j

(
YDATA

j − hj

)
)2

; (13) 

where Neff , K+, h, and λ all depend on ~θ.

For a 2D system, the kernel reduction K≈URUT
R is used to compute both 

the pseudoinverse, based on Eq. 12, and the effective degrees of freedom at 

the denominator of Eq. 13, based on λ2
∑N

i;j[K
+]

2
i;j≈N − n2

k+

λ2
∑n2

k

k;k′ ([U
T
RUR + λId]

− 1
k;k′ )

2
. For a 1D system, the cost in Eq. 13 is directly 

computed with the primary definition of the kernel (Eq. 8).

Error on parameter estimation and goodness of the fit

Once the parameters ~θest have been inferred by minimizing the cost function 

(Eq. 13), the error on their estimation can be calculated using a quadratic 

expansion of the cost function around its minimum, yielding an estimated 

error matrix

〈
(

~θest − 〈~θest〉
)

⊗

(

~θest − 〈~θest〉
)

〉

= 2

Neff

(
~θest

)H− 1C

(

~θest

)

;
(14) 

where H is the Hessian of the cost function with respect to ~θ evaluated at 
~θest.

We used two approaches to assess the goodness of the fit. The first is 

based on the adjusted coefficient of determination, which is the coefficient 

of determination (usually denoted by R2) corrected using the number of de

grees of freedom—this avoids a spurious increase of the coefficient of 

determination with the number of fitting parameters (63). In our case, the 

adjusted R2
adj takes the form

R2
adj = 1 −

C

(
~θest

)

∑N

i = 0

(

YDATA
i

− nxδ
q
(1)

i
;0

δ
q
(2)

i
;0

〈IDATA〉

)2

Neff

(
~θest

)
(N − 1)

Neff

(
~θest

)
− nθ

(15) 

where C(~θest) is the minimum of the cost function (Eq. 13), 〈IDATA〉 is the 

average of the raw data vector, and nθ the length of the vector ~θ. Larger 

(and closer to 1) R2 means a better fit (as this corresponds to smaller min

imum of the cost function). This test can be used to compare different 

models, e.g., diffusion and reaction, for the same data set YDATA; the 

model with larger R2 should be favored. However, the adjusted R2 cannot 

be used for an absolute evaluation of the goodness of the fit because the 

standard deviation of the data vector may vary from experiment to exper

iment, in particular with the shape and depth of the initial bleaching 

profile.

For an absolute evaluation of the goodness of the fit, we used a 

Kolmogorv-Smirnov statistical test as follows. The starting point is that 

multiplication by λK+ in Eq. 7 approximately corresponds to projection 

on the orthogonal space of the matrix K (or of UR in the case of kernel 

reduction). As consequence, the residuals can be approximated as 

ri≈
∑np

p= 0

∑N
j= 0 Φi;pΦj;p(Y

DATA
j − hj), where the columns of the null ma

trix Φ (size np × N) are the eigenvectors of K (or left eigenvectors of UR) 

associated with eigenvalues above the threshold λ = Nσ0ϵ. If we define 

the projected residual as ~rp =
∑N

j= 0 Φj;p(Y
DATA
j − hj), ~rp computed 

at ~θtrue depends only on the noise contribution ei = YDATA
i − YTH

i (~θtrue)

because 
∑N

j= 0 Φj;p(~θtrue))(Y
DATA
j − hj(~θtrue))≈0. Therefore, since 

~rp(~θtrue)≈
∑

jΦj;p(~θtrue)ej is a large linear combination of uncorrelated 

noise, the projected residuals computed at the true kinetic parameter values 

should be normally distributed. Accordingly, we apply the Kolmogorov- 

Smirnov normality test (48) to the vector ~r. We test the hypothesis that 

the model is compatible with the data by testing the null hypothesis that 

the reduced residuals are normally distributed. As can be seen in Fig. S5, 

we obtain a pvalue smaller than 0.05 only for 5% of the simulations, as ex

pected when the artificial data correspond to the model tested. However, 

this method is much slower compared with the adjusted R2, as the compu

tation of eigenvectors scales with O(N3), while the computation of the stan

dard deviation scales with O(N).
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Modeling signal acquisition

Here, we aim at accounting for two experimental features: photobleaching 

during imaging associated with imaging and diffraction in the optical setup. 

When the sample is imaged, photobleaching occurs at a rate ε per image. 

Diffraction implies that the detectors collect the true signal convolved by 

the point-spread function, assumed to be a Gaussian of width μ as a 

point-spread function. The sampling operator can then be expressed as

S : c(x; t)→ ITH
k = A exp

[
− ε tk

Δt

]∫

R2

d~xg

(
~x − xk; μ2

)
c(~x; tk) + IBG;

(16) 

where the scaling parameter A can be set to 1 if the unit of intensity is arbi

trary, the 2D point-spread function is given by

g
(
x; μ2

)
=

1
̅̅̅̅̅̅̅̅̅̅
2πμ2

√ exp

[

−

(
x(1)
)2

+
(
x(2)
)2

2μ2

]

; (17) 

and IBG is the background signal.

Inference in the case of pure diffusion without 

photobleaching

Here, we apply the inference method to the signal {YDATA
i }

N
i= 1 in the case of 

a purely diffusive model when photobleaching during imaging is negligible, 

i.e., ε = 0. In this case, the only kinetic parameter to infer is D, the diffu

sion coefficient. The analytical solution of diffusion PDE (1) with a generic 

initial condition c(y; 0) can be expressed as

c(x; t) =

∫

R2

dyg(x − y; 2Dt)c(y; 0) (18) 

with g defined as in Eq. 17. If we apply the sampling operator S to c(x; t)

and the compress the resulting vector {ITH
i }

N
i= 1, we obtain the theoretical 

compressed signal as

YTH
i =

∑N

k = 0

⎧
⎨

⎩
Fi;k

∫

R2

dyg
(
xk − y; 2Dtk + μ2

)
c(y; 0)

+Fi;kIBG

⎫
⎬

⎭

(19) 

By comparison with Eq. 5, we identify the kernel matrix Gi(x; y) =
∑

k

g(xk − y; 2Dtk +μ2), the shift vector hi = 0, and w(y) = c(y; 0)+

IBG. We remark that in this case there is no need to estimate the background 

value to infer diffusion, as its contribution is incorporated into the initial 

perturbation w(y). Moreover, even if the width of the point-spread function 

μ is not known, in practice we can set this parameter equal to Δx, the pixel 

size. Indeed, we found that the average and the variance of the estimated 

parameter distribution are not affected by this choice as long as the true 

value of the system μtrue⪆1 (see Fig. S4). We obtain the kernel matrix 

from Eq. 8 as

Ki;j =
∑Ntot

k;l = 0

Fi;kFj;le
− ε

Δt
(tk+tl)g

(
xk − xl; 2D(tk + tl)+ μ2

)
;

(20) 

from which it is possible to compute κ(l) =
∑Ntot

k;l= 0
~F(q

(l)
i ; x

(l)
k )~F(q

(l)
j ;

x
(l)
l )e− ε(tk+tl)=2g(x

(l)
k − y

(l)
l ; 2D(tk +tl)+μ2), with l ∈ {1; 2}, and UR 

with Eq. 11. Finally, we infer the diffusion coefficient Dest by minimizing 

the cost function (Eq. 13).

Inference in the case of reaction-diffusion with 

photobleaching

Now we consider the underlying model to be a linear reaction-diffusion 

PDE (Eq. 2) and photobleaching during imaging not to be negligible, i.e., 

ε ∕= 0. Following the same approach as in the previous section, the theoret

ical compressed signal takes the form

YTH
i =

∑Ntot

k = 1

⎧
⎪⎨

⎪⎩
Fi;ke−

ε
Δt

tk

⎛

⎜
⎝

(
α
β
− e− βtk

)

+ e− βtk

∫

R2

dy g

(
xk − y; 2Dtk + μ2

)
(c(y; 0) − α = β)

⎞

⎟
⎠+Fi;kIBG

⎫
⎪⎬

⎪⎭

(21) 

In this case, the set of parameters to a priori estimate from our method is 

listed in Table 4. By comparison with Eq. 5, we identify YTH
i and we obtain 

the kernel from Eq. 8

Ki;j =
∑Ntot

i;j = 1

Fi;kFj;ke− ( ε
Δt
+β)(tk+tl)g

(
xk − xl; 2D(tk + tl)+ μ2

)
(22) 

and

hi(α; β) =
∑Ntot

k = 1

{
Fi;kα

/
β
(
1 − e− βti

)
e− ε ti

Δt +Fi;kIBG

}
:

(23) 

We note that hi(α; β) is defined at β = 0 by continuity using limβ→0(1 −

exp ( − βti))=β = ti. From Eq. 22, we deduce κ(l) =
∑Ntot

k;l= 0
~F(q

(l)
i ;

x
(l)
k )~F(q

(l)
j ; x

(l)
l )e− ε+β)(tk+tl)=2 g(x

(l)
k − y

(l)
l ; 2D(tk +tl)+μ2), with l ∈ {1;

2}, and UR with Eq. 11. Finally, the cost function defined in Eq. 13 can be mini

mized with respect to the kinetic parameters D, α, β, and IBG. Since IBG and α 
are linear parameters, the values, IBG

min and αmin, which minimize the cost for 

fixed D and β can be obtained analytically as

⎡

⎣
IBG
min

αmin

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑N

i = 0

[JBG]
2

i

∑N

i = 0

[Jα]i[JBG]i

∑N

i = 0

[Jα]i[JBG]i

∑N

i = 0

[Jα]
2

i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

− 1

[
∑N

i = 0

[JBG]iY
DATA
i

∑N

i = 0

[Jα]iY
DATA
i

]

(24) 

where [JBG]i = ∂IBG
ri and [Jα]i = ∂αri are the Jacobian of the residuals (7) 

with respect to IBG and α taking the form

Lorenzetti et al. 

2956 Biophysical Journal 124, 2941–2960, September 16, 2025



⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[JBG]i = λ
∑N

j = 0

[K+]i;j

∑Ntot

k = 0

Fj;k

[Jα]i = λ
∑N

j = 0

[K+]i;j

∑Ntot

k = 0

Fj;k

α
β
(
1 − e− βtk

)
e−

ε
Δt

tk

(25) 

So, the cost in Eq. 13 is computed directly at IBG = IBG
min and α = αmin 

and minimized numerically with respect to D β, and ε, yielding the final es

timations Dest, βest, εest, I
BG
est = IBG

min(Dest;βest; εest), and αest = αmin(Dest;

βest;εest).

Improving parameters estimation using extra- 

information

Even though we can estimate all parameters in Eq. 21, knowing a priori the 

background and the photobleaching decay rate can improve the estimation 

of model parameters Dest, αest, and βest. For this reason, it is important to 

take advantage of information available beyond the FRAPped area. A sam

ple-free area gives access to the background IBG by averaging the signal 

over this area. The photobleaching loss rate can be extracted from a region 

of the sample far enough from the FRAPped area, by an exponential fit ∼

e−
ε

Δt
ti to the spatial average signal over this area. Moreover, if a pre-FRAP 

image is present, we can obtain the stationary concentration cs by averaging 

the signal over the area that is later FRAPped. This value sets the ratio be

tween the exchange and source rate, cs = α=β. This a priori information 

can be integrated in the computation of the kernel and shift terms. In 

Table 5, we recapitulate the kernel and shift terms for all experimental con

ditions: with or without photobleaching, with or without an unfrapped con

trol area, with or without a sample-free area, and with or without 

prebleaching images. It is important to remark that when photobleaching 

is absent and no background area is available, the contribution to 

the signal intensity of the source rate α and the background value IBG cannot 

be distinguished. In such cases, HiFRAP can only estimate the combined 

parameter α∗ = α + βIBG. To determine α separately, the user must obtain 

the value of IBG from independent experiments.

Numerical implementation

In this section, we describe the numerical implementation of HiFRAP using 

SciPy and NumPy package in Python. We wrapped the corresponding 

scripts in an ImageJ plugin also called HiFRAP.

We begin with the calculation of the cost function, which requires 

computing the inverse of a matrix (K + λId)
− 1 

(or its expression with UR 

in Eq. 12). This is achieved using the Cholesky decomposition. Specifically, 

we first compute the Cholesky factor L using scipy.linalg.lapack.dpotrf. 

The inverse, L− 1, is then obtained using scipy.linalg.lapack.dtrtri, which 

takes advantage of the triangular shape of L using a recursive block algo

rithm. Finally, the pseudoinverse is given by (K + λId)
− 1

= L− TL− 1. 

To obtain the threshold λ, the first eigenvalue is calculated by Lanczos bi

diagonalization using scipy.linalg.svds.

To minimize the cost function (Eq. 13) with respect to D, β, and/or 

ε, we first determine an appropriate initial condition for these param

eters to start from the numeric algorithm. In this context, we suppose 

the typical relaxation time of diffusion tD = l2

16D
, dissociation rate 

tβ = log(2)=β, and/or photobleaching tε = Δt log(2)=ε to be equal 

to half of the total observational window T. Since the typical bleach

ing size l is not known, we approximate this value l≈L=2, where L is 

the total spatial window. These yields as initial parameters 

Din = (L=2)
2
=16=T (or (L=2)

2
=8=T in 1D), βin = log(2)=T, and/or 

εin =
log(2)Δt

Ttot
:

Next, the full reflective trust region algorithm is applied as implemented 

in scipy.optimize.least_squares(method = ‘trf’). Optimization is performed 

by restricting the parameter ranges according to the spatiotemporal obser

vation window, as parameter values outside these ranges would be physi

cally meaningless. For the diffusion coefficient D, we impose that the 

timescale associated with the slowest Fourier mode, of order L2=D (where 

L denotes the total spatial window), must be larger than 5Δt, ensuring suf

ficient temporal resolution. Conversely, the timescale associated with the 

fastest Fourier mode, of order (L=nq)
2
=D (with nq the highest wavenumber 

considered), must be smaller than 40T, where T denotes the total temporal 

observation time. For the exchange rate β, whose characteristic timescale is 

of order 1=β, we constrain β such that − T < 1=β < 100T. Here, negative 

values of 1=β are allowed, as they can arise when the empirical error 

Δβemp is comparable with the true value βtrue. For the photobleaching decay 

rate ε, we require that it is not negligible over the temporal window, restrict

ing its values such that 100T < 1=ε < T=15. During the optimization proced

ure, convergence is considered achieved when the relative variation in the 

estimated parameter vector ~θ between successive iterations satisfies 

‖Δ~θ=~θ‖ <10− 4.

Once the minimum of the cost function is found, the Hessian is computed 

using the Jacobian of residuals ri(~θ) divided by the square root of the trace 

Ji = ∇~θ(ri(~θ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Neff (~θ)
√

), using the approximation H≈
∑N

i= 0 Ji ⊗ Ji, as 

implemented in the reflective trust region numerical method. The 

Jacobian is computed numerically by taking a finite step of the order of 

10− 2~θest, which corresponds to the typical noise error, except that the deriv

atives with respect to the source rate are computed analytically from Eq. 25. 

Finally, to evaluate the goodness of the fit, the null matrix Φ is obtained by 

computing the eigenvectors and eigenvalues of K or UR using the SVD as im

plemented in numpy.linalg.svd.

Artificial data

Artificial concentration fields c(x; t) were obtained by solving analytically 

the reaction-diffusion Eq. 2 (or the diffusion Eq. 1), with known param

eters Dtrue, αtrue, and βtrue. The initial condition describes a square 

FRAPped profile,

c(x; y; 0) =

⎧
⎨

⎩

cs − Δc if |x −
L

2
|<

l
2

and |y −
L

2
|<

l
2

cs else;

(26) 

where Δc=cs is the proportion of bleached fluorophores and l is the 

square side length. To get the signal vector, the concentration solution 

was multiplied by a factor A and convoluted with a Gaussian function 

of width μtrue to mimic the effect of the point-spread function. Photo

bleaching during imaging is readily accounted for by multiplying the so

lution by an exponentially decaying function with rate εtrue. The 

background value IBG
true was added to the resulting signal. The theoretical 

data vector takes the form

IDATA
k = Ae−

εtrue
Δt

tk

(

cs − ΔIe− βtrue tk
1

2
ψ
(

x
(1)

k

)
ψ
(

x
(2)

k

))

+ IBG
true;

(27) 

TABLE 4 Parameters of signal acquisition model and of PDE

IBG Background signal

μ width of point-spread function

ε rate of photobleaching during imaging

D diffusion coefficient

α source rate

β exchange (or dissociation) rate
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with

ψ
(

x
(p)

k

)
= erf

⎛

⎜
⎝

x
(p)

k −
l
2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Dtruetk + 2μ2
true

√

⎞

⎟
⎠

− erf

⎛

⎜
⎝

x
(p)

k +
l
2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Dtruetk + 2μ2
true

√

⎞

⎟
⎠;

where the error function is defined as erf(x(p)) = 2̅ ̅
π

√
∫ x(p)

0
e− t2

dt and ΔI =

AΔc the signal drop-off. The stationary concentration cs is fixed for pure 

diffusion, whereas for reaction-diffusion, cs = αtrue=βtrue. The same pro

cedure was applied for a Gaussian bleaching profile, X shape, and E shape 

(obtained by translation, rotation, extension, and superposition of square 

bleaching profile).

To obtain a realistic data set we add noise to the deterministic solution,

IDATA
k = ITH

k + ηN k; (28) 

where η is noise amplitude and N k is sampled from a Gaussian 

random variable of mean zero and standard deviation 1. Finally, we 

compress the simulated vector (Eq. 27) using the compression operator 

C (Eq. 3).

Unless specified otherwise, we used the following default values: nx =

121, nt = 16, l=(nxΔx) = 3, μtrue=Δx = 1, η=ΔI = 0:25, IBG=

ΔI = 0:5, cs=ΔI = 2 with Δx = 1, Δt = 1, ΔI, A = 1 in arbitrary 

units; for diffusive systems Dtrue = 2l2=16=(nt − 1)=Δt or Dtrue = 7l2=

16=Δt=(nt − 1) (if photobleaching is present) and βtrue = 0; for reaction- 

diffusive systems Dtrue = 7=2l2=16=(nt − 1)=Δt, αtrue =βtruecs, βtrue = 7=

2 log(2)=(nt −1)=Δt; if photobleaching is present εtrue = 1=(nt − 1) other

wise εtrue = 0.

Experiments

The Schizosaccharomyces pombe strain mtl2-GFP:ura4+ (identifier RN21 

(12)) was used for experimental validation of the method. Standard fission 

yeast methods and media were used (64). The cells were grown in YE5S 

liquid culture overnight at 25◦C, diluted in fresh medium and grown to 

an optical density (OD600) between 0.4 and 0.6 before live-imaging. Cells 

were imaged on EMM (minimal medium) 2% agarose pads at room temper

ature (22–25◦C); EMM shows reduced background noise in comparison 

with YE5S agarose pads. Cells were imaged at their bottom surface, close 

to the coverslip. Images were acquired with a 100× oil-immersion objective 

(CFI Plan Apo DM 100×/1.4 NA, Nikon, Minato City, Tokyo, Japan) on an 

inverted spinning-disk confocal microscope equipped with a motorized 

stage and an automatic focus (Ti-Eclipse, Nikon, Minato City, Tokyo, 

Japan), a Yokogawa (Musashino, Tokyo, Japan) CSUX1FW spinning 

unit, a Prime BSI camera (Teledyne Photometrics, Tucson, Arizona) and 

an iLas2 module (GATACA Systems, Massy, France) for FRAP. During 

FRAP, a 0.4 μm square ROI was bleached with the 491 nm laser at 20– 

60% power and 30 repetitions and the fluorescence recovery was monitored 

for a time interval ranging from 7–10 s.

An online supplement to this article can be found by visiting BJ Online at 

http://www.biophysj.org.
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TABLE 5 Summary of the kernel and shift term formulas for each model under different experimental conditions

Model Prebl. Photobl. Back. Kernel Shift term

D yes/no no yes/no g(xk − xl;2D(tk +tl)+μ2) /

D yes/no yes yes/no

e
−

ε
Δt

(tk + tl)
g(xk − xl;2D(tk +tl)+μ2)

IBG

RD/R yes no no e− β(tk+tl)g(xk − xl;2D(tk +tl)+μ2) Itot

RD/R yes yes no e− β(tk+tl)g(xk − xl;2D(tk +tl)+μ2)
Itote

− tk

ε
Δt + IBG(1 − e

− tk

ε
Δt)

RD/R yes yes/no yes

e
− (β+

ε
Δt

)(tk+tl)

g(xk − xl;2D(tk +tl)+μ2) cse
− tk

ε
Δt + IBG

RD/R no no no e− β(tk+tl)g(xk − xl;2D(tk +tl)+μ2) α∗=β(1 − e− βtk )

RD/R no no yes e− β(tk+tl)g(xk − xl;2D(tk +tl)+μ2) α=β(1 − e− βtk ) + IBG

RD/R no yes yes/no

e
− (β+

ε
Δt

)(tk+tl)

g(xk
− xl;2D(tk +tl)+μ2) α=β(1 − e− βtk )e

−
ε

Δt
tk
+ IBG

From left to right: model (diffusion, D; reaction, R; or reaction-diffusion, RD), presence of prebleaching images (yes or no), whether imaging induces 

photobleaching (yes or no), whether a sample-free background area is available (yes or no), and corresponding kernel and shift term (without compres

sion for ease of notation). The diffusion coefficient, D, and exchange rate, β, are always estimated by numerical minimization of the cost function or set 

to zero in the formulas when not included in the model. The background signal, IBG, is estimated by averaging the signal in the background area when 

this information is available; otherwise, if IB appears in the formula, its estimated value is determined through analytical minimization of the 

cost function. The stationary concentration (in arbitrary units), cs, is estimated by averaging the prebleaching images and subtracting the background 

IBG when both prebleaching and background areas exist. When the background does not exist, the average prebleaching signal corresponds to Itot, the 

sum of the background signal and the stationary concentration. The source rate, α, is determined via analytical minimization of the cost function or a 

posteriori as αest = cs=βest when cs is known, or as αest = (Itot − IBG)=βest when the background is estimated through cost minimization. In the other 

cases (third and sixth rows), it is not possible to estimate directly α but only the parameter α∗ = α + βIBG from analytical minimization of the cost 

function (sixth row) or a posteriori from α∗
est = Itotβest if Itot is known (third row). The photobleaching decay rate ε is either computed from the 

control area when present or by numerical minimization of the cost function. Δt is the time interval between two images while the function g is defined 

in Eq. 17.
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