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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is broadly used to investigate the dynamics of molecules in
cells and tissues, notably to quantify diffusion coefficients. FRAP is based on the spatiotemporal imaging of fluorescent mole-
cules after an initial bleaching of fluorescence in a region of the sample. Although a large number of methods have been devel-
oped to infer kinetic parameters from experiments, it is still a challenge to fully characterize molecular dynamics from noisy
experiments in which diffusion is coupled to other molecular processes or in which the initial bleaching profile is not perfectly
controlled. To address this challenge, we have developed HiFRAP to quantify the reaction- (or exchange-) diffusion kinetic pa-
rameters from FRAP under imperfect experimental conditions. HiIFRAP is based on a low-rank approximation of a kernel related
to the model Green’s function and is implemented as an ImageJ/Python macro for (potentially curved) one-dimensional systems
and for two-dimensional systems. To the best of our knowledge, HiFRAP offers features that have not been combined together:
making no assumption on the initial bleaching profile, which does not need to be known; accounting for the limitation of the op-
tical setup by diffraction; inferring several kinetic parameters from a single experiment; providing errors on parameter estimation;
and testing model goodness. In the future, our approach could be applied to other dynamical processes described by linear par-
tial differential equations, which could be useful beyond FRAP, in experiments where the concentration fields are monitored over
space and time.

SIGNIFICANCE Fluorescence recovery after photobleaching (FRAP) is a microscopy approach that is widely used to
investigate the diffusion and transport of molecules in life sciences and in material sciences. Numerous methods have
been developed to derive kinetic parameters such as diffusion and binding coefficients. However, these methods suffer
from limitations associated with experimental constraints, such as technical noise or an imperfectly known initial condition.
To circumvent these limitations, we developed a comprehensive approach to estimate several kinetic parameters from a
single experiment, to assess the precision of estimation, and to test whether the underlying model is well suited. We
implemented this approach in HIFRAP, an ImageJ/Python macro of broad applicability to one- and two-dimensional
systems.

INTRODUCTION ment. Several methods have been developed to assess such
molecular dynamics, including fluorescence recovery after
photobleaching (FRAP), fluorescence spectroscopy, or sin-
gle-particle tracking (1). Among these, FRAP appears as
the most widely used method (1-5), likely because the mi-
croscopy setup is technically accessible.

FRAP is designed to study the dynamics of fluorescent
molecules by monitoring the response to an initial perturba-
tion. Molecules are first photobleached by strong and short
light pulses in a region of the sample, a spot that is often disk

Cells and tissues are the place of permanent transport and
transformation of matter. At cellular level, trafficking, bind-
ing and unbinding, or diffusion, are essential in the self-or-
ganization of the cell, for instance. At multicellular
level, diffusion, directed transport, and degradation of mor-
phogens are key to setting morphogen distributions and
providing positional information during organism develop-
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its initial level, and the pattern of recovery is informative of
the underlying dynamics. Different bleaching geometries
have been used depending on the biological system under
investigation, imaging speed, and optical resolution. As
alternative to spot FRAP (e.g., bleaching a disk), a long
and thin strip can be bleached (6,7) and a line orthogonal
to the strip is monitored, allowing for a faster imaging
rate and a simplified analysis using one-dimensional (1D)
spatial models. Another configuration is inverse FRAP
(iFRAP), where the entire system is bleached except for a
small region (8). Inverse FRAP can also be implemented us-
ing photoconversion, rather than traditional photobleaching,
to reduce photodamage and better preserve cell viability
during imaging (9). In this setup, the fluorescent signal is
present only in a specific region first and then decreases
over time, yielding a decay curve.

FRAP is routinely used to determine diffusion coeffi-
cients. When molecules only undergo diffusion, the time-
scale of fluorescence recovery (or decay for iFRAP) is a
function of the diffusion coefficient and of the size and
shape of the initially bleached region (we will often use
FRAPped region in the following) (3—5). When molecules
only undergo binding and unbinding to immobile substrates,
then the timescale of fluorescence recovery is the inverse of
the binding rate (3-5). Here, we consider more complex sit-
uations where several molecular processes are coupled, such
as diffusion and binding/unbinding.

At the cellular level, FRAP has also been used to investi-
gate protein synthesis (10), dynamics of molecular conden-
sates (11), mechanosensing (12), transport of mRNA (13),
or cell adhesion (14,15). At the tissue level, FRAP has
been used to assess diffusion of morphogens (16) or expan-
sion of the extracellular matrix (17). FRAP also appears in
material science, for instance, to characterize pharmaceu-
tical compounds (3,18). Despite the practical importance
of FRAP, a comprehensive method to analyze and interpret
FRAP data is still lacking (3). Here, we contribute to tack-
ling this issue.

The classical method to determine diffusion coefficient is
based on the theoretical calculation of the average concen-
tration in the bleached region and fits to the recovery curve
of fluorescence in that region (19,20). Although the classical
method is easy to implement, it assumes that the initial
bleaching profile is perfectly known, it does not use the in-
formation available in spatial variations, and it does not
easily allow to distinguish diffusion from other processes
(19). These limitations prompted the development of more
sophisticated methods. Methods that do not require the
knowledge of the bleaching profile are based on the decom-
position of the fluorescence levels into Fourier modes and fit
the temporal decay of the mode amplitude to theoretical so-
lutions, in linear (21,22), in axisymmetric geometry (23), or
without assumptions on geometry (24). Methods that use all
spatial information to improve precision use fits of the
spatiotemporal concentration field to analytical (25) or
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numerical (26,27) solutions of the diffusion equation, the
former being restricted to Heaviside-like initial bleaching
profile and the latter allowing initial bleaching profile of
arbitrary shape. Other studies built methods to account for
the effect of boundary conditions on diffusion (11), for
diffusion on curved surfaces (9,28), or for anomalous diffu-
sion (29,30).

Several studies have addressed the use of FRAP to deter-
mine the kinetic parameters of chemical reactions, binding/
unbinding dynamics, or exchanges between compartments,
which all formally amount to chemical reactions. In general,
these studies directly deduce constants from average pre-
bleaching fluorescence and recovery time of average fluo-
rescence in the bleached area (10,31-33), possibly
accounting for rapid diffusion before the reactions take
place. However, there are discrepancies between values of
kinetic parameters according to the model used (34) and it
is difficult to disentangle reactions from diffusion (35).

Another line of investigation has accounted for the
coupling between reactions and diffusion. It is possible to
solve numerically reaction-diffusion equations in complex
realistic geometries to simulate FRAP and investigate
changes in qualitative behavior according to parameters
(36). To obtain kinetic parameters, an option is to use fluo-
rescence recovery in the bleached area or in the region of in-
terest (ROI) and to fit analytical recovery curves of several
experiments with varying sizes of the bleached regions,
which provides enough information to deduce more than
one kinetic parameter (6,37,38). Another option is to use
all spatial information and fit the spatiotemporal concentra-
tion field (fluorescence level) to analytical (29,39) or numer-
ical (40-43) solutions of reaction-diffusion equations (for
one or two species, according to the problem of interest).
We note that these methods are constrained by the need to
know the initial condition, i.e., the profile of fluorescence af-
ter initial bleaching. Using Fourier coefficients of the fluo-
rescence field (44) like in some of the methods to infer
diffusivity already mentioned, it was possible to get rid of
this constraint, at the price of averaging several experiments
together to average out noise. We aim at going beyond lim-
itations by noise and the need to precisely know the
bleached profile. Indeed, the bleached profile is difficult to
control experimentally (24) and discrepancies with the
assumed profile generally lead to a misestimation of kinetic
parameters (6,20).

Some studies accounted for other couplings, such as
advection (directed transport) and diffusion (19), advec-
tion-reaction (45), or advection-reaction-diffusion (13),
with similar limitations to those previously discussed.
Here, we only consider reaction-diffusion, but we note
that our method is generalizable to any process described
by linear partial differential equations (PDEs). In addition,
we account for photobleaching during imaging, i.e., bleach-
ing of fluorophores due to their excitation during time-lapse
imaging, following a few studies that inferred the rate of



photobleaching during imaging from experimental data
(23,26,42).

Altogether, we aim at building a method to infer from
FRAP the kinetic parameters of a process described by a re-
action-diffusion equation from single experiments. We as-
sume that experiments are noisy, that the initial bleaching
profile is unknown, and that gradual photobleaching
occurs due to imaging. We also account for the diffrac-
tion-limited resolution of the optical setup. We have named
our approach HiFRAP, for highly informed FRAP, because
we maximize the use of available spatiotemporal informa-
tion. In the following, we formulate the problem as one of
cost minimization and propose a systematic method to solve
it. We validate and optimize the approach with synthetic
data. Finally, we present HiIFRAP, the implementation of
the approach as an ImageJ macro (available at https://
github.com/lorenzetti1996/HiFRAP_project), and illustrate
it with experimental data on the transmembrane protein
Mt12p in fission yeast (46).

RESULTS AND DISCUSSION
General framework in the case of pure diffusion

FRAP experiments involve imaging at regular intervals a
ROI containing the initially bleached (FRAPped) domain.
The quantity of light emitted from the sample is propor-
tional to the local concentration of fluorescent molecules,
as long as saturation of the detectors is avoided. However,
imaging the sample also results in photobleaching, so that
fluorescence is attenuated by a constant factor after each im-
age. The optical setup causes a spatial smoothing of the light
pattern due to diffraction, which is characterized by the
point-spread function of the microscope. The recorded
signal results from three contributions. The first contribution
is proportional to the concentration of fluorescent mole-
cules, provided appropriate tuning of the excitation laser
and detector gain; it contains a noisy part due to the statis-
tical fluctuations of the number of these molecules in a small
volume. The second contribution originates in technical
noise, mostly associated with the detector. The third contri-
bution is a background homogeneous signal associated with
the detector. Accordingly, the recorded signal is a smoothed
version of the field of fluorophore concentration, combined
with noise and shifted by a background intensity. In
HiFRAP, we account for point-spread function, photo-
bleaching during imaging due to imaging, background in-
tensity, and noise. The time-lapse data are assumed to be a
temporal sequence of square images. The signal to be
analyzed is sampled n, times after every time interval Af,
over n, X n, square pixels of side length Ax.

For the sake of simplicity, we introduce and validate
HiFRAP assuming that the underlying dynamics is set by
diffusion only. We generalize our approach to reaction-
diffusion in applying HiFRAP to reaction-diffusion. We
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illustrate our approach in two dimensions, although the
Imagel/Python plugin is also implemented for diffusion
along a line. The concentration of fluorophores c¢(x, y, ) is
a function of spatial coordinates (x,y) and of time 7. It is a
solution of the diffusion equation

0,c = Dtruevzcv (1)

where Dy is the true diffusion coefficient, o, is the partial
derivative with respect to time, and V? the Laplace operator.
Our goal is to provide the best estimate D, of the diffusion
coefficient.

When photobleaching during imaging is not negligible,
homogeneous regions of the sample (far from the
FRAPped domain) show fluorescence decaying by a factor
p; = exp (— et; /Ar), where ¢ is the decay rate per image,
t; the time at which the i-th image is collected, and At¢ is
the time interval between two consecutive images. The
decay rate per image & directly relates to the light dose
received by the sample at each data acquisition. On many
experimental setups, this quantity is fixed and does not
depend on the time step Ar, which is our assumption
throughout this article. In classical wide-field fluorescence
microscopy, for example, most systems use a shuttered illu-
mination setup in which the excitation light (e.g., from a
mercury lamp) only reaches the sample during camera expo-
sure. In confocal laser scanning microscopy or multiphoton
microscopy, € corresponds to the fluoresence decay induced
by the light dose delivered during a single scan. The theoret-
ical solution of the diffusion Eq. 1, c¢(x,y,#) should be
multiplied by this factor p;. Photobleaching, however, does
not affect the background intensity, Igg, which is considered
to be constant in time and space. The background value Izg
and the decay rate per image e are either supposed to
be known from regions distinct from the FRAPed area as
explained in applying HiFRAP to experimental data, or in-
ferred altogether with the dynamical parameters as dis-
cussed in applying HiFRAP to reaction-diffusion.

Fig. 1 A shows an example of the synthetic data set gener-
ated by solving analytically the diffusion Eq. 1. The ROl is a
square of side length L. The FRAPped domain is a square of
side length € = L/3 in which the fluorophores concentra-
tion is set to O at t = 0. The first row shows the simulated
spatial profile of the fluorophore concentration, which be-
comes smoother and converges to the initial density over
time, as could be expected. The second row shows a micro-
scope-like time-lapse imaging, obtained from the simulated
(true) concentration field by adding an uncorrelated
Gaussian random variable corresponding to technical noise
and applying a Gaussian spatial filtering corresponding to
the point-spread function of the optical setup (see artificial
data). In the following, we use such synthetic data to test
our method and estimate the precision of the estimated
diffusion coefficient, D.y, with respect to its true
value, Dye.-
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FIGURE 1 Inferring the diffusion coefficient
from simulated FRAP. (A) A square region of
interest of side length L is monitored and a central
square region of side length € = L/3 is FRAPped
at = 0. From top to bottom: raw artificial data,
microscope-like synthetic data accounting for
diffraction and technical noise, compressed syn-
thetic data, concentration field fitted by HiFRAP,
and residuals of the fit. From left to right: snap-
shots from r = 0 to t = 2tp, where tp = ﬁ
is taken as a unit of time. Gray- and colorscales
indicate the concentration or signal intensity
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normalized by the drop in concentration Al at
t = 0 in the FRAPped square. Dark (blue) to
bright (red) indicate low to high concentration or
signal. The decay rate per image due to photo-
bleaching is set to ¢ = 0. For other parameters,
default values are given in artificial data.
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A method to infer parameters from FRAP
experiments

HiFRAP estimates kinetic parameters such as diffusion

coefficient independently of any assumptions on the
initial bleaching pattern. We use Ny = n, X n, X 1y
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(2D spatial x temporal) pixels from time-lapse imaging.
We fit a theoretical model to those data by minimizing a
cost function that quantifies the differences between
observed data and theoretical solution. The model is built
from the solution for (Eq. 1) and accounts for the point-
spread function (see general framework in the case of pure



diffusion for more details). The estimated kinetic parame-
ters are insensitive to the details of the point-spread function
(29), provided its width p exceeds the pixel size Ax, as
shown in Fig. S4—a condition generally met in experi-
ments. We therefore set u = Ax by default and do not
require experimental determination of the point-spread
function.

The fit of the model to the data is performed iteratively in
two steps, each minimizing the cost function: at each itera-
tion, we first estimate the initial conditions for fixed kinetic
parameters, and then update the kinetic parameters (in this
case, the diffusion coefficient). To estimate the initial condi-
tions, we use both spatial and temporal data and define the
cost function as the sum of squared deviations between
model predictions and the observed data. Because the
PDE is linear with respect to the initial condition, the model
response is also linear, and the cost function becomes
quadratic in the initial condition. As a result, for fixed ki-
netic parameters, the optimal initial condition can be ob-
tained by solving a linear system of equations. Once the
cost is minimized with respect to the initial conditions (for
fixed kinetic parameters), it is normalized by the effective
number of degrees of freedom (see fitting model
parameters). The kinetic parameters are then updated by
minimizing the normalized cost using the reflective trust re-
gion algorithm (47), which is suited to bounded nonlinear
least-squares problems.

Two important subtleties arise in the estimation of initial
conditions at each iteration. First, the problem is inherently
ill-posed: an infinite number of initial conditions can pro-
duce the same observed data, since measurements are finite
while the initial condition is a continuous field belonging to
an infinite-dimensional space. To address this, we use pseu-
doinversion to identify the components of the initial condi-
tion that influence the observed data. This reveals that only a
limited number of degrees of freedom in the initial pattern
significantly affect the measurements. Second, pseudoinver-
sion becomes computationally expensive for large data sets,
as it involves operations on matrices of size Ny X Niot,
which is prohibitive when Ny > 10°. To overcome this,
we reduce the data size through compression, enabling im-
plementation in an interactive ImageJ plugin. Specifically,
we apply a discrete Fourier transform to compress the
data in both spatial dimensions and retain only a subset of
Fourier components. This reduces the data set to a manage-
able size N = nyXx nyx n;. As shown in optimizing
experimental and analysis parameters, we find that values
of n, between 5 and 9 are sufficient to obtain reliable esti-
mates of the kinetic parameters. The resulting compressed
data set, with N on the order of 10% to 10*, allows efficient
pseudoinversion to compute the optimal initial condition for
the current estimate of the kinetic parameters (here the
diffusion coefficient D).

To assess the uncertainty of the inferred parameter, we as-
sume the cost around the minimum to be quadratic with

Inference method for imperfect FRAP

respect to the fitting parameter and we estimate the curva-
ture of the cost function around the minimum by computing
the Hessian as a higher curvature indicates higher precision
(Fig. 1 B), see error on parameter estimation and goodness
of the fit for details. To evaluate the goodness of the fit we
use two metrics. The adjusted coefficient of determination
Rﬁdj is the classical coefficient of determination (R?) cor-
rected using the effective number of degrees of freedom;
it quantifies how well the model explains variations of
the observed data, and ranges from O (no explanation) to 1
(perfect fit). A limitation of the Rgdj is that its value may
depend on the amplitude of noise and on the initial
bleaching profile (see error on parameter estimation and
goodness of the fit). Accordingly, the Rgdj should be used
to compare two models applied to the same experiment,
as used in applying HiFRAP to reaction-diffusion and
applying HiIFRAP to experimental data. The second metrics
is not sensitive to the level of noise and the bleaching
profile as it estimates whether the distribution of residuals
is compatible with a Gaussian distribution using the
Kolmogorov-Smirnov test. It returns a p value indicating
whether to reject the null hypothesis that the residual distri-
bution is compatible with a Gaussian. The only limitation is
that it is computationally very slow because it involves an
explicit calculation of all residuals in an appropriate basis,
see error on parameter estimation and goodness of the fit.

HiFRAP is illustrated with synthetic data in Fig. 1. In (A),
the two first rows are the true concentration of fluorophores
and the simulated microscope-like images. For our analysis,
we compress the microscope-like images (third row) to
which we fit the model (fourth row), obtaining relatively
small residuals (fifth row). In (B), we plot the cost function
(after optimizing the initial condition) as a function of the
fitting parameter D for the diffusion coefficient. The
estimated diffusion coefficient D. is defined as the value
of D that minimizes the cost. We use the curvature of the
cost function (inset in B) and noise amplitude to estimate
the uncertainty AD.y on the diffusion coefficient, see
error on parameter estimation and goodness of the fit.
Here, the coefficient of diffusion is well estimated,
Dest/Diwe = 0992, and the relative uncertainty
AD¢g/Desy = 0.01 is small. Finally, we test the validity of
the model by examining whether residuals are normally
distributed, which is implemented using the Kolmogorov-
Smirnov tests (48) (see error on parameter estimation and
goodness of the fit). Here, we find a p value of 0.57, showing
that the diffusion model is a good model for these data, as
could be expected. Moreover, the adjusted coefficient of
determination has a value Rﬁdj = 0.989, although it is
only meaningful when comparing two models applied to a
single data set.

HiFRAP was also implemented for FRAP experiment
along a line. In Fig. S6, we show an example of HiFRAP
inference applied to synthetic data for a 1D diffusive sys-
tem, with similar results to the 2D case.
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FIGURE 2 Validation of HiFRAP on a collection of synthetic data. (A) Estimated diffusion coefficient D.y; B estimated uncertainty AD.y and empirical
error ADep,. The quantities are all normalized by the true diffusion constant Dy and plotted as a function of the normalized noise amplitude 7/ Al, where
is noise amplitude, A/ is the drop-off in intensity after initial photobleaching. Violins represent distributions of D and AD.y while the ticks highlight
average and extreme values. The dashed gray line in (A) represents the reference value Des/Dye = 1, while the dashed blue line in (B) corresponds to
the empirical error ADep,. The number of realizations is 200 for each value of noise strength and the decay rate per image due to photobleaching is set

toe = 0.

Validation on artificial data

To thoroughly evaluate the robustness of the inference
method, we applied HiFRAP to six collections of
synthetic data sets of size ng, each corresponding to a
different noise level. Within each collection, multiple data
sets were generated using identical model parameters (as
in Fig. 1) but with different realizations of the noise. For
each synthetic data set, we estimated the diffusion coeffi-
cient Doy and its error AD.y. For each collection, we
computed the average estimate (D) (the brackets ( ) stand
for average over the collection) and the empirical error

ADemp = \/n(:—dil«Dest - Dtrue)2>'

In Fig. 2, we plotted the estimated diffusion coefficient
D, and estimated uncertainty AD.g as a function of noise
strength. Fig. 2 A shows that the distribution of D is well
centered around its true value Dy.. The standard deviation
of this distribution increases with the noise amplitude # and
the coefficient of variation ADcmp/Des reaches values
comparable with 1 for noise strengths # such that 5/
Al ~ 1072/Nyo; ™~ 4, where Al is the amplitude of the
drop in intensity after initial photobleaching. Fig. 2 B
shows that the estimated error AD.y agrees well with the
empirical error AD.,,, except for the highest amplitude
of noise, validating the estimation of error from a single
data set. HIFRAP also works for diffusion along a line as
shown with synthetic data in Fig. S6, although with less
precision due to less spatial averaging (less pixels) than
in 2D diffusion. Overall, HIFRAP provides good estimates
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of the diffusion coefficient and of its error from a single
experiment.

Optimizing experimental and analysis parameters

To optimize the estimates of kinetic parameters (here diffu-
sion coefficient), we aim at tuning parameters that are
accessible in experiments—side length of FRAPed region
¢, number of time frames n,, and delay between frames
Ar—and in analysis—number of modes n, kept for the
compression. We implicitly assume the space resolution,
Ax, to be constrained by the microscope used and the
side length of the ROI, L, to be constrained by the size
of the system and its spatial variations—the ROI should
be as big as possible while sufficiently homogeneous.
The bleaching size £ and the number of modes n, influence
the amount of useful spatial information. To be optimal, the
size of the FRAPped region ¢ should be large enough for
the perturbation in fluorescence associated with FRAP to
be of significant weight compared with noise, whereas ¢
comparable with L leads to a loss of spatial information
contained in the periphery of the FRAPped region. We
found that the error on estimation of the diffusion coeffi-
cient is minimal roughly around € ~ L/3 in the case of a
square FRAPped region. Concerning the number of modes
kept in the discrete Fourier transform, fair estimates are
reached for n, > 5 (Fig. S2). Accordingly, we took
¢ =L/3 and n, = 9 in all our analyses, except when
specified otherwise.
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The time resolution of experiments may be constrained
by the sample imaged, for instance, when there is phototox-
icity. Here, we only consider constraints due to the optical
setup, which are mostly associated with photobleaching dur-
ing imaging. The intensity of the observed signal decays
with the number of images acquired, proportionally to
exp[— &(n, — 1)], so that the signal quickly vanishes
when 7, increases beyond 1/e + 1. We therefore choose n,
to be the integer part of 1/¢ + 1. Concerning the choice of
the time step At between two images, we note that the tem-
poral decay rate due to photobleaching is &/At¢, while the
relaxation (to equilibrium) rate due to diffusion is the in-
verse of the diffusion time tp = €?/(16D)—defined as
the time at which the standard deviation of the position of
a Brownian particle reaches half the side length of the
FRAPed region. If the time step At is too low, then fluores-
cence disappears before diffusion can be observed, whereas
if the time step At is too high, most of the images are taken
after diffusion has homogenized concentrations and these
images are not informative. As a consequence, we expect
the optimal delay between images to correspond to &/
At ~ 1/tp. To further test this conclusion, we plotted in
Fig. 3 the normalized empirical error ADemp/Demp as func-
tion of dimensionless delay At/ (7pe). As expected, the plot
shows that the error AD¢p, has a minimum. This minimum
occurs when Ar ~ 10tpe, a value that we used in the
remainder of this study.

The decay rate € can also be reduced by decreasing the
light dose delivered to the sample. In wide-field microscopy,
this is typically achieved by modifying light intensity or the
exposure time. In confocal microscopy, it can be controlled
by adjusting the laser power or scanning speed. However,
this decreased lighting reduces fluorescence, which deterio-
rates the signal/noise ratio at the detector. Altogether, it is
unclear how changing the lighting conditions may affect
the precision of HiFRAP.

Inference method for imperfect FRAP

Benchmarking HiFRAP

To test the efficiency of HIFRAP, we compared it with clas-
sical methods to obtain diffusion coefficient. Beforehand,
we stress the versatility of HIFRAP because it makes no
assumption on FRAP patterns or on boundary conditions,
which is not the case of classical approaches. This is illus-
trated in Fig. S3, where the region FRAPped is axisym-
metric with a Gaussian profile, X shaped or E shaped. For
the comparison with other methods, which assume the
bleaching pattern to be known, we considered a square
FRAPped domain. Benchmarking was performed with
respect to two classical approaches, as described in (6,20).
The two approaches are based on determining the bleaching
profile by fitting the postbleach image, and then estimating
the diffusion coefficient by analyzing the recovery curve,
i.e., the temporal variations of the signal average over
the FRAPped region. For the first step, we followed (6)
and modeled the square FRAPped profile as a 2D sharp
function f(x,y) = H(€/2 —x+xo)H(x —xo+€/2)H(t/
2 —y+yo)H(y —yo+€ /2) (with H the Heaviside function
H(u) = 0ifu<0and H(u) = 1if u>0), smoothed to ac-
count for the point-spread function of the microscope.
Accordingly the postbleach profile is parametrized by its
size €, the position of its center (xg, o), and the smoothing
length. In a second step the two approaches differ. In the
relaxation time-based method, the half-recovery time 7,
is estimated as the time at which the intensity has recovered
half of its initial value in the FRAPped region (20). The
diffusion coefficient is then computed using the theoretical

relation Dey; = 0.923 ﬁ valid for a square FRAPped re-

gion. In the temporal fit-based method, the diffusion coeffi-
cient is obtained by fitting the recovery curve to the
theoretical curve for a FRAPped region with side length
and smoothing length, as obtained in the first step. The final
formula is found in (6).

As the three methods retrieve the true diffusion coeffi-
cient on average, we compared their respective precisions.
The empirical errors on diffusion coefficient are shown in
Fig. 4 for different amplitudes of noise. The errors are
computed for 200 artificial data sets for each noise
strength. As could be expected, the empirical error in-
creases with the noise strength. HIFRAP performs better
than the two other approaches, especially at lower noise
values, although HiFRAP does not make any assumption
on the FRAPped bleaching profile. We ascribe the perfor-
mance of HiFRAP to the fitting of spatiotemporal
data instead of temporal data in other approaches. This
comes with a higher computational cost for our approach.
HiFRAP requires a few seconds to be run, depending
on the number of Fourier modes 7, and temporal points
n;, (see Fig. S2), whereas classical methods are
almost instantaneous because models are fit to only n,
data points.
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2 .
\/,,:%1(([)551 — Dye)”) from estimated
values Dy and true value Dy, of the diffusion coefficient from ngs =

200 number of data sets. . Error bars represent the estimated standard error
of the empirical error.

was computed as ADeyp =

Applying HiFRAP to reaction-diffusion

Our method can be generalized to infer kinetic parameters for
more complex dynamics. Besides diffusion, molecules may be
synthesized, degraded, or undergo other chemical reactions. In
addition, membrane-localized proteins or lipids may be exo-
cytosed or endocytosed. As long as the changes in concentra-
tion are not too large, the dynamics of one chemical species
can be modeled by a linear diffusion-reaction equation,
oc

a = Dtmevzc + Qe — ﬂtruec7 @)

where Dy is still the diffusion coefficient, while e and f,e
represent source rate and exchange rate, respectively, both
assumed to be constant. The interpretation of these reaction
terms depends on context. For instance, oy, may correspond
to a synthesis rate and f3,,,. to adegradation rate. In the case of a
membrane-localized molecule, oy, and S, may correspond
to the rates of exocytosis and endocytosis, respectively, of this
molecule. To extend HiFRAP to reaction-diffusion, we fol-
lowed the same approach as in a method to infer parameters
from FRAP experiments with the difference that the cost to
minimize now depends on multiple parameters, D, a, f, and/
or &. The minimization with respect to D, 3, and ¢ is performed
numerically using the reflective trust region algorithm, while
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and Iz are computed analytically (see inference in the case of
reaction-diffusion with photobleaching for details). The imag-
ing step can be optimized as in optimizing experimental
and analysis parameters for a weak laser beam. Eq. 2
involves two characteristic times, the diffusion time 7, =
€2/(16Dyne ), and the exchange time 73 = log(2)/p. The
typical recovery time ¢, for the combined dynamics is expected
to be of the order of 1/t. = 1/tp + 1/t5. Accordingly, the
optimal time step can be taken as At ~ &f,./10.

We generated artificial reaction-diffusion data with the
same initial square FRAP profile as before, as described
in artificial data. Fig. 5 shows the inference of the parameters
of Eq. 2 from these data using HIFRAP. We first assumed that
the stationary solution c; is perfectly known a priori, from the
prebleaching images, for instance. When ¢ is known, the cost
function depends only on D and 3 (see inference in the case of
reaction-diffusion with photobleaching). In Fig. 5 A, we show
an example of the contours of the cost function. The estimate
on o may be obtained from the relation dest = Csffog- TO
explore the behavior of our method, we would a priori need
to vary Diye, Qirye, and f,.. However, changing the ratio
Qrue / Pirue ONly changes the stationary concentration and so
does not affect the uncertainty of the different estimates.
Changing the recovery time ¢. does not significantly affect
the precision of the method, since we adapt the time resolu-
tion of the experiment accordingly. We therefore varied the
ratio 73/tp in Fig. 5, B and C, keeping tue /Py and ¢, con-
stant. As could be expected (39), the uncertainty on the diffu-
sion coefficient becomes high when the fluorophore
dynamics is dominated by reaction and, reciprocally, the un-
certainty on the relaxation coefficient becomes high when the
dynamics is dominated by diffusion. We note that, like in the
pure diffusion case, the curvature of the cost function yields a
good estimate of the error on parameters (see Fig. S1).
Finally, we assessed the quality of the fit by comparing it
with fits to diffusion only (assuming e = P = 0) and
reaction-only models (assuming Dy, = 0) using the
adjusted coefficient of determination Rgdj. Fig. 5 D shows
that Ridj is always much larger for the reaction-diffusion
model, meaning that it better explains the data, except for
low or high ratios of reaction to diffusion times, for which
the reaction-diffusion model is almost equivalent to one of
the two simplest models.

When the values of rate of photobleaching during imag-
ing, stationary concentration and background are unknown,
they can be estimated together with the kinetic parameters
using optimization in 5D space. Fig. 6 shows the results of
HiFRAP in this case. Our estimates remain fairly good.
The errors on diffusion and reaction coefficients behave
like in the preceding case, although they are bigger here
owing to the higher dimensionality (5 instead of 2). The er-
rors on the source rate, bleaching rate, and background in-
crease when the fluorophore dynamics is dominated by
diffusion, similar to the exchange rate because all three pa-
rameters effectively relate to reactions.
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FIGURE 5 HiFRAP applied to the estimation of diffusion and reaction rates knowing the pre-FRAP concentration field and the rate of photobleaching
during imaging. (A) Contour plot of the normalized cost function (log,,[C /5?], with # the amplitude of the noise) as a function of the normalized fitting
parameters D /Dy and f/ ..., while the source term « is constrained to be a = fc;, with ¢, the stationary concentration known from prebleaching images.
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cost function; its coordinates yield the estimates Deg and ff. . (B and C) Estimated dynamical parameters D, and f,, as function of the reaction-diffusion
time ratio #3/1p = 16 102(2)/€*Dirue/Biue keeping the signal relaxation time t, = (1/t5 4+ 1/tp)”" = At/7 constant. Violin plots show the distribution of
the estimates and horizontal ticks indicate the maximum, the average, and the minimum of the distribution. The dashed gray line represents the reference
value at which the estimated parameter is equal to the true parameter of the system. Here, the stationary concentration, c;, is assumed to be known from the
average pre-FRAP concentration field, so that aesy = ¢,f.. The rate of photobleaching during imaging, €, is supposed to be known from a control area. The
number of data sets analyzed is 200. (D) Adjusted coefficient of determination, Radj, for three different fits, diffusion only, reaction only, and reaction-diffu-
sion, as a function of reaction-diffusion time ratio. The error bar represents the mean and the standard deviation of the distribution.

Applying HiFRAP to experimental data macro with experiments in fission yeast. We considered
a putative mechanosensitive transmembrane protein,

We implemented HiFRAP as an Image] macro that  Mtl2p, which is homogeneously distributed around the
wraps Python scripts (available on https://github.com/  cell surface (46). We prepared and imaged cells as detailed
lorenzetti1996/HiFRAP_project). Here, we illustrate the  in experiments. Given that Mtl2p has very low cytoplasmic
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concentration, we hypothesized that, over the timescale of
experiments, Mtl2p diffuses along the surface of the cell,
and we aimed at testing this hypothesis and at estimating
the diffusion coefficient.

Building upon preceding sections, we implemented
the HiFRAP Image] macro for three models (diffusion
only, reaction-diffusion, or reaction only) and for various
experimental options. These options include the poten-
tial use of additional information to reduce errors on the
estimation of parameters, see improving parameters
estimation using extra-information for details. In partic-
ular, HIFRAP enables to select two regions outside the
ROI (contains the FRAPped domain): a region free from
fluorescent reporters (background ROI)—used to estimate
the background value Iz by averaging, and an unFRAP-
ped region (control ROI)—used to estimate the rate of
photobleaching during imaging &. Fig. 7 A shows three
example ROIs for a 2D FRAP geometry. The ROIs were
chosen as large as possible to maximize the amount of in-
formation analyzed, within the constraint of being not too
close to cell edges (as viewed from the top) or to image
edges, to avoid the effects of, respectively, cell curvature
and optical distortion on signal intensity. Potential addi-
tional information also includes prebleaching images,
which yield stationary molecule concentration ¢, by aver-
aging. In cases where FRAP is performed in a 1D geom-
etry, the user selects polylines instead of rectangular
regions to define the control and FRAP areas. These poly-
lines are then straightened using Imagel]’s built-in algo-
rithm to create a linear representation: a user-defined
width is used to extract and average pixel intensities
perpendicular to the path, generating a 1D intensity profile
for each image.

In FRAP experiments on Mtl2p-GFP, typical estimates
are Ipg~100 [A.U.] for the background level (from the back-
ground ROI), ¢,~30 [A.U.] for the stationary concentration
(using one prebleaching image), and & ~ 10~ 2 for the pho-
tobleaching (using the control ROI). In Fig. 7, B and C we
show the same plots as in Fig. 1 for the estimation of the
diffusion coefficient from one FRAP experiment. The cost
function presents a single minimum (C) and the correspond-
ing best fit to compressed experimental data is shown in the
third row of (B).

We optimized experimental parameters following
optimizing experimental and analysis parameters. The size
of the ROI being limited by cell width, we chose to use
square ROIs of side length ~ 1.5 ym and FRAPped square
regions of side length € ~ 0.5 ym. In practice, we found
that the initial bleaching profile was imperfect; the reduction
in signal intensity was inhomogeneous and did not occur
over a perfect square (see + = 0 in Fig. 7 B). This may be
caused by different factors such as the small size of the
FRAPped region, laser imprecision, or fluctuations in fluo-
rophore concentration. To adjust the imaging time step Af,
we first estimated the order of magnitude of the diffusion co-

Inference method for imperfect FRAP

efficient and of photobleaching rate per image by applying
HiFRAP to a preliminary experiment. We found & ~ 102
and Dy ~ 10* ym?s~!. Then, to optimize our analysis,
we chose Ar = (5/8)&t?/D~10s, and n, =
1/e ~ 100. Finally, to limit the computational cost, we
used n, = 9 modes for the compression.

Following parameter adjustment, each of the 18 analyzed
cells was FRAPped once. We fitted experimental data to
each of the three models: diffusion only, reaction-diffusion,
and reaction only. Estimated parameters are given in
Table 1. To assess whether the dynamics of Mtl2p-GFP is
dominated by diffusion or by reaction, we computed the
adjusted coefficient of determination Rﬁdj, as shown in
Fig. 7 D. In all the 18 experiments, the diffusion model
has a higher Rﬁdj compared with the reaction model, indi-
cating that diffusion contributes more to Mtl2p dynamics
at the experimental timescale; the diffusion-reaction model
has slightly higher Ridj than the diffusion only model, sug-
gesting that the two are almost equally good at explaining
the data. Consistently, the Kolmogorov-Smirnov test rejects
the reaction model (the p value is greater than 0.05 for 60%
of the cases, well below the threshold of 95%) and tends to
reject the reaction-diffusion model. In addition, when
considering a reaction-diffusion model, we find an average
loss rate that is not positive, which is not physically accept-
able because it means, for instance, that the rate of detach-
ment of Mtl2p from the membrane is negative. For this
reason, we conclude that pure diffusion better explains
experimental data.

Considering a diffusion model, we found an average value
of the diffusion coefficient, (D) = 1.93 10~ *um?s~!,
lower than diffusion coefficients of proteins in animal cell
membranes (2), but in agreement with the order of magnitude
100* — 107 2um?s~! for membrane-localized proteins in
budding yeast or in fission yeast (12,49-52). Such low value
of surface diffusion coefficient is likely due to the presence
of a cell wall (53). We also note that the empirical error—
i.e., the standard deviation of the diffusion coefficient over
all experiments—AD.y, = 1.40 10~ 4um?s~!, is much
greater than the estimated error in single experiments
(ADey) = 0.07 10~* ym?s~ . This reflects biological cell-
to-cell variability in diffusion, which has already been
observed in cultured animal cells based on single-particle
tracking (54).

CONCLUSION

We have developed HiFRAP, a method to infer reaction (or
exchange)-diffusion kinetic parameters from FRAP with
imperfect conditions, and we have implemented it as a
Fiji plugin. HIFRAP leverages the full spatiotemporal infor-
mation contained in the time-lapse sequence to derive ki-
netic parameters, errors on these parameters, and a test of
model validity so as to select which model better explains
experimental observations.
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FIGURE 7 Inferring the diffusion coefficient from experimental data. (A) Fluorescence microscopy image of a fission yeast cell expressing Mlt2-
GFP. The cell was bleached inside a region to the left of the cell center. Three regions were selected with Fiji. The square is the region of interest
that contains the FRAPped region and has side length = 1.45 ym. The top rectangle is the control ROI, used to estimate rate of photobleaching during
imaging. The bottom rectangle is the background ROI, used to estimate background signal intensity. (B) From experimental signal to fit; two-dimen-
sional data shown at four time points—time in seconds is indicated above the first row, # = 0 follows initial bleaching. From top to bottom: exper-
imental data inside the ROI; compressed experimental data; fit to compressed experimental data; residuals of the fit. The grayscale and colorscale are
shown on the right. (C) Corresponding cost function C (normalized by its minimum) as a function of fitting parameter D (normalized by the estimated
diffusion coefficient D) for the diffusion coefficient; the inset is a zoom-in around the minimum with the cost function in the arbitrary unit of the
signal and the diffusion values in um?/s. (D) Assessing the goodness of the diffusion model by comparing it with reaction-diffusion and to reaction-
only models. Top: adjusted coefficient of determination Rﬁdj normalized using its value for the diffusion model; each line corresponds to one of the 18
experiments (one color per experiment). Kolmogorov test (bottom): each bar indicates the fraction of cases in which the Kolmogorov test was above the
0.05 value; the red dashed line indicates the level below which the model should be rejected; error bars correspond the error in sampling a binomial
distribution.

HiFRAP combines all useful features that have been (21-24,27,42,44) nor on boundary conditions; HiFRAP

developed separately in previous work. HIFRAP makes
it possible to infer several parameters from a single
FRAP experiment (6,13,19,36-38,40-45), as long as sys-
tem dynamics is sufficiently sensitive to these parameters
(39). We make no assumption on the bleaching profile
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is thus well-suited experimental conditions in which it is
difficult to bleach uniformly the target region or to be
far from boundaries. Moreover, due to its versatility,
our method is applicable to all the FRAP variants dis-
cussed (spot, strip, and iFRAP), even though the source
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TABLE 1 Estimated parameters (mean + standard deviation over 18 experiments) and associated errors for each model

Parameter (Dest) (op") Pes) (a5") (es) (o'

Unit 10~ *um? /s 10~ 4um?/s 104571 104571 AUs™! AUs™!
Diffusion 1.93+1.40 0.07+0.06 - - - -
Reaction-diffusion 33+32 0.2+0.2 — 10+16 2+1 — 0.18+0.29 0.03+0.02
Reaction - - 9.4=+45 0.5+0.2 0.166+0.100 0.008 +0.003

From left to right: diffusion coefficient Deg, error on diffusion ¢, exchange rate §, error on loss o;“, source rate Qes (AU stands for arbitrary unit), and error

on source ¢

term for the reaction is zero in the case of the photocon-
version configuration. Furthermore, HIFRAP accounts for
intrinsic photobleaching associated with repeated imag-
ing, either based on a control region or on inference of
photobleaching rate (23,26,42). Finally, HiFRAP inte-
grates three features that do not seem to have been imple-
mented before: errors on parameter estimation for a single
experiment; diffraction in the microscopy setup—
although the precise characteristics of the point-spread
function are not required as long as its width is larger
than pixel size; test of model goodness. We ran HiFRAP
against classical benchmarks and found that HIFRAP pro-
vides lower or equal errors despite being more general.
Although relying on advanced inference techniques,
HiFRAP remains accessible: a user-friendly macro allows
experimentalists to perform the analysis with only a min-
imal understanding of the underlying theory (such as the
number of compression modes), which are the only
user-defined inputs required.

However, HIFRAP has a few limitations. First of all,
HiFRAP is relatively slow (execution time of a few seconds
with standard parameters and standard computer). Most
available methods do not explicitly deal with noise. We
were led to make the simplifying assumption that noise is
homogeneous and stationary, which is not necessarily true
(42,55). For example, the amplitude of the shot noise asso-
ciated with photon counting is proportional to the square
root of the signal. Such spatiotemporal variation of noise
would likely affect error estimation but not parameter
estimation.

In principle, HIFRAP can be adapted to FRAP variants,
involving, for instance, continuous photobleaching of a re-
gion or photoconversion of a fluorophore (5), and to the
FRAP analysis of other types of dynamics, such as advec-
tion by active transport (13,45), subdiffusion (29,30), multi-
ple-species (13,39,42), and nonflat geometries (9,28).
HiFRAP assumes linearity of underlying PDEs, but this is
not a strong limitation as the dynamics becomes quickly
linear upon return of the system to its equilibrium state.
Currently, HIFRAP cannot handle 3D geometries, multispe-
cies models, or systems involving advection phenomena and
it assumes an image acquisition time much smaller than
molecule dynamics. However, future developments may
address these limitations, enabling broader applicability of
the method.

. From top to bottom: reaction only, reaction-diffusion, and reaction-only models.

Our method is actually not restricted to FRAP and could
be used for inference of parameters for any linear PDE
based on the effects of a perturbation on the system. We
can therefore expect applicability of our method to capillary
isoelectric focusing (56) or to optogenetics (57). Overall,
our approach can be considered as a good alternative to
machine learning approaches since it does not require
training (58).

MATERIALS AND METHODS
Data sampling and compression

Here and elsewhere, we present our methodology for a 2D system,
which also applies to a 1D system unless specified. The notations used
troughout this section are summurized in Table 2. We consider a spatio-
temporal signal collected at discrete positions (X(l),X(z)) such that
X1 = X® = [0,Ax,..., (n, —1)Ax] and times T = [0, At ..., (n, —
1)A¢], where Ax is the spatial mesh size and At is the time step, n, X ny
is the number of pixels and n, the number of time frames. We vectorize the
measurements by arranging them into a unique vector {{P7}¥* | composed
of Ny = n’n, elements, where the index k = a + bn, + cn? is associated to

the space-time triplet (5 ,El),xf)ﬂk) = (X,(,‘),X,EQ),T(.), X and T, being the
a-th components of the vectors X() and 7, respectively. We assume that the
empirical data correspond to a theoretical spatiotemporal signal c(x, y, 7) that

can be sampled into a theoretical data vector through the sampling operator

S c(x,t) < {1}V, defined as Lonron = c(x0,x2 T.).

To save data storage space and computational time, we compress these
vectors into smaller vectors made of N elements (N <N,,), defining the
compression operator C: {I; 1}, < {¥;}""_,. In practice, we chose to
compress in the space domain because n, X n, is in general much greater
than n,: We keep n, spatial Fourier coefficient per axis, so that N =
ngn,. Accordingly, we define the compression operator as

N
C:Y; = > Fubysu/adi 3)

k=1

where 8;; is Kronecker’s delta and the Fourier matrix has elements
Fix = Flg" x")F(g? .57 with

1 ) (P)) e )
CoS\ g, "X if g <0
\/z ( Pk G

~ 1
F<ql(17)’x,<{17>) i
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i 1 ifg” =0
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TABLE 2 Notations for sampling and preprocessing TABLE 3 Notations for inference
—
ny Number of pixels per axis 0 Vector of kinetic parameters to be inferred
p p p
n number of time frames (of 2D images) g’[me vector of true values of kinetic parameters
Ax pixel size . vector of estimated kinetic parameters
At time interval between two frames est tial perturbati
. . . w spatial perturbation
c(x,1) concentration field (function of space and time) . P P .
Cw+h the linear operator G and the shift vector i
JPATA raw data vector X
K . . e; noisy part of the preprocessed vector
JTH noiseless theoretical data vector . .
k n amplitude of the noise
ypATA preprocessed (compressed) data vector K kernel operator
Yy noiseless theoretical preprocessed data vector K+ pseudoinverse of the kernel operator
S sampling operator, maps concentration field onto A small positive number to ensure matrix inversion or
raw data vector threshold on eigenvalues
c compression operator, maps raw data vector onto UrU} reduced kernel by SVD truncation along each axis
. prepl'”ocessed vector . Ney trace of [}LK*]2 representing the effective degrees of
F spatial Fourier transform matrix
number of spatial modes kept per axis after frecedom
Mg P ‘et p 0] null matrix associated with kernel operator
compression . .
P r residual between data and theory vector after fitting

where the index i is associated to the Fourier-temporal vectorization with

the Fourier vector of each axis spanning the value Q) = Q@ =
aAx | _ ng—1 0 ng—1
e —1 2 o T

The results in Fig. S2 show that, as long as n, > 3, compression affects
neither the accuracy—how close the mean of the distribution of the esti-
mated parameter is to the true value—nor the precision of the estima-
tion—the variance of the estimated parameter distribution. Typically,
ng > 5 is sufficient to reach 80% of the precision that would be obtained
without compression.

Inferring dynamical parameters
Problem formulation

In this section and the following ones, we detail the method used to estimate
the dynamical parameters. To help the reader, we gathered all mathematical
notations introduced through the inference procedure in Table 3. Our aim is
to estimate the vector 6 = {6y, ...,0,} of the parameters of a linear PDE
from an empirical signal {YPA74}Y_ | We consider system dynamics after
a linear perturbation w(x). The theoretical, noiseless solution to the PDE
takes the form

vfgw) = /g,«(é’,y)w(y>dy+h,-(é’), )
J

where the linear operator G (related to Green’s function) and the shift vector
h are specific to the PDE. As we will see later, it is also possible to include
in G; the effect of any linear operation on the signal, such as spatial filtering
by the optical setup.

We consider experimental/technical noise, defined as ¢; =
Y™ (Birue, Wirne )» Where e and wime are the true parameters and initial
condition. We assume that the ¢; are uncorrelated, i.e., (ej¢;) = 51‘,;"72,
where §;; is the Kronecker delta and 5 the unknown noise amplitude.

DATA
YPATA _

Fitting the initial condition at fixed model parameters

Under these hypotheses, we can estimate the vector 6 resorting to the least-
squares method, which consists in minimizing a cost that quantifies the dif-
ferences between observed data set and theoretical solution YPA™ —
YTH (0, w). Since the initial profile w is not known, at any given 6, we first
estimate it by minimizing the cost Cioy = SOV, (YPATA — YTH (9, w))*
with respect to w. By exploiting the fact that the theoretical solution (5)
is linear in w, this operation can be performed analytically, yielding
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the initial condition at @ fixed
projected residual in the null space generated by @

~

SO

where the residual vector r, which represents the difference between the
data vector and the constrained fit at fixed 0, is given by

r (é) — K" (79') (YDATA _ h(é)). %)

K™ is the pseudoinverse of the kernel matrix K (59)

Ky = [6(.5)5(6.5) ®)

R2

We use the pseudoinverse K+,

Kt = (K +AMd)™" )

because the kernel matrix K is not definite positive. The small positive num-
ber 1 ensures that the pseudoinverse is well defined. We take A = Noye, using
the largest eigenvalue o of the kernel matrix K and machine precision € (60),
yielding typical values of A(6) in the range 10~ to 10~ 12,

Kernel reduction

To accelerate the computation of the pseudoinverse in Eq. 7, we take advan-
tage of the fact that multidimensional problems can often be reformulated
in terms of smaller matrices that describe the structure of the kernel along
each spatial direction. As we will see in inference in the case of pure
diffusion without photobleaching for diffusion and inference in the case
of reaction-diffusion with photobleaching for reaction-diffusion, the kernel
matrix can be factorized as

Ki,j = K<q§1>7 ti? q](l)7 lff)K(qz('Z)a ti7 q/('Z)a tj) (10)



56), t, q}e), 1), with ¢ € {1,2}, are
collected in a matrix x(© of dimension nghy X ngn;, whose u-th row and

v-th column are mapped by the relations u = a + cny,v = d' + ¢'n, for

The values of the function « at (g

Dandu = b+ cng, v = b+ C’nq for «®, where a, b, ¢ are associated

to the (qgl),qsz),t,-):(QI(I‘LQ,(JZ),T,) and o, b, ¢ to

(q}l), ;Z)Jj) = (Q,(,})7Q§3);Tc’) as previously defined in data sampling

triplet

and compression.

Using singular value decomposition (SVD)-based truncation (61), we
approximate the matrices () by considering the ng eigenvalues oy, k €
{0,..,nx — 1}, larger than the same threshold A = ngn.€0¢ as for the pseu-
doinverse and the associated eigenvectors Uy (ql(e) ,t;). This operation yields
an approximated kernel

ng

Kij~ Z Uk (q,m, fi) Uv (%@a fi) 00, Uk (flfl)v fj)
ki =0
(11)
2
Uk’ (q}< )7 l}) Z [UR]i‘k” [UR]jka
k=0

where Ug is a matrix of size min; x nf, with components [Ugl;;» =

Uy (q}l),t[)Uk: (q,(.z)7 tj)/oxo, with k&’ = k + nik’. Under this approxima-
tion, exploiting the Woodbury matrix identity, the pseudoinverse takes
the form

K" =1d — [UR(U,gUR +/11d)"U,€], (12)

which is much faster to compute compared with its full expression since
the size of the matrix U Ug + AId is smaller than the size of K+ Ald by a
factor of ~ 10 with the parameters used here. We note that, because of the
definition of 4, the errors induced by the approximations above are of the
order of machine precision and so are negligible. In practice, we use this
approximation of the pseudoinverse K for a 2D system, but not in dimen-
sion 1 because the computational gain is limited, in which case we directly
compute the pseudoinverse of the kernel matrix as given by Eq. 9.

Fitting model parameters

The next step would be to minimize the sum of the squared residuals (Eq. 7)
with respect to 6. However, the average contribution of the noise vector
{ei}'_, to the residuals {r;}}_ scales with the effective degrees of freedom
Ny (6) = 2 27:0[1(*]/3 associated with the fit of the initial condition
(62) whose value varies according to €. For this reason, to avoid biasing
the inference toward values of @ that require stronger constraints for the
initial condition fit (indicated by a lower number of effective degrees of
freedom), we normalize the sum of residuals squared in Eq. 7 by Ngﬁ'(é).
Combining this normalization with Eqs. 7 and 9, we obtain the estimation

of the parameter vector by minimizing the cost C(6) as

—

Oy = arg min C 6) with C(6
min € (9) with €(0)
2
L N\ ot (ypaTa
= Ny i;o j;oKi:/ (Y; - hj) ) (13)

where Nz, K, h, and 1 all depend on 6.

For a 2D system, the kernel reduction K~Ug U; is used to compute both
the pseudoinverse, based on Eq. 12, and the effective degrees of freedom at
the denominator of Eq. 13, based on 4 Zf; K +],.ZJ.zN - 4+

2 1.2 . o
2 ka, ([UEUR + Ald),}})". For a 1D system, the cost in Eq. 13 is directly
computed with the primary definition of the kernel (Eq. 8).

Inference method for imperfect FRAP

Error on parameter estimation and goodness of the fit

Once the parameters Oes have been inferred by minimizing the cost function
(Eq. 13), the error on their estimation can be calculated using a quadratic
expansion of the cost function around its minimum, yielding an estimated
error matrix

(0 - @) 2 (0 - @)

\lvhere H is the Hessian of the cost function with respect to 6 evaluated at
Hcsl-

We used two approaches to assess the goodness of the fit. The first is
based on the adjusted coefficient of determination, which is the coefficient
of determination (usually denoted by R?) corrected using the number of de-
grees of freedom—this avoids a spurious increase of the coefficient of
determination with the number of fitting parameters (63). In our case, the

adjusted Rﬁdj takes the form
C (gzu1> Nﬂﬁ (ges!) (N - l)
7

N N, é, —n
YPATA _ 5 5 JDATA f ( esl) d
Dico < i 2 o qu)x)( ))
(15)

Ridj =1-

where C(6) is the minimum of the cost function (Eq. 13), (I”AT4Y is the
average of the raw data vector, and ny the length of the vector 6. Larger
(and closer to 1) R? means a better fit (as this corresponds to smaller min-
imum of the cost function). This test can be used to compare different
models, e.g., diffusion and reaction, for the same data set YPATA; the
model with larger R? should be favored. However, the adjusted R?> cannot
be used for an absolute evaluation of the goodness of the fit because the
standard deviation of the data vector may vary from experiment to exper-
iment, in particular with the shape and depth of the initial bleaching
profile.

For an absolute evaluation of the goodness of the fit, we used a
Kolmogorv-Smirnov statistical test as follows. The starting point is that
multiplication by 4K in Eq. 7 approximately corresponds to projection
on the orthogonal space of the matrix K (or of Uy in the case of kernel
reduction). As consequence, the residuals can be approximated as
iR Z;”:O 27:0 (D,-_ptbj_,,(Y_/-DATA — h;), where the columns of the null ma-
trix @ (size n, X N) are the eigenvectors of K (or left eigenvectors of Ug)
associated with eigenvalues above the threshold 1 = Nope. If we define
the projected residual as 7, = E;-V:() @;,(YPAA — 1), F, computed
o = YPTA YT )

hj(étme))zo. Therefore, since

at éuue depends only on the noise contribution
because Ejv:o <I>j<,,(§true))(Y})ATA -
7‘,,(@me)zzjdy,p(@tm)g, is a large linear combination of uncorrelated
noise, the projected residuals computed at the true kinetic parameter values
should be normally distributed. Accordingly, we apply the Kolmogorov-
Smirnov normality test (48) to the vector 7. We test the hypothesis that
the model is compatible with the data by testing the null hypothesis that
the reduced residuals are normally distributed. As can be seen in Fig. S5,
we obtain a pyap. smaller than 0.05 only for 5% of the simulations, as ex-
pected when the artificial data correspond to the model tested. However,
this method is much slower compared with the adjusted R?, as the compu-
tation of eigenvectors scales with O(N?), while the computation of the stan-
dard deviation scales with O(N).
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Modeling signal acquisition

Here, we aim at accounting for two experimental features: photobleaching
during imaging associated with imaging and diffraction in the optical setup.
When the sample is imaged, photobleaching occurs at a rate & per image.
Diffraction implies that the detectors collect the true signal convolved by
the point-spread function, assumed to be a Gaussian of width x4 as a
point-spread function. The sampling operator can then be expressed as

S:ice(x,t)>I" = Aexp {—sﬂ /dfcg
RZ
(5( - xk,ﬂz)C(JNC, tk) +1BG7

where the scaling parameter A can be set to 1 if the unit of intensity is arbi-
trary, the 2D point-spread function is given by

(16)

1
g(x7ﬂ2) = 2—7['“2 exp — Z—ﬂZ 5 (17)

and /g is the background signal.

Inference in the case of pure diffusion without
photobleaching

Here, we apply the inference method to the signal {YPA74 }fv: | in the case of
a purely diffusive model when photobleaching during imaging is negligible,
ie., & = 0.In this case, the only kinetic parameter to infer is D, the diffu-
sion coefficient. The analytical solution of diffusion PDE (1) with a generic
initial condition ¢(y, 0) can be expressed as

i) = [t =5 200,00 18)
B2
with g defined as in Eq. 17. If we apply the sampling operator S to c(x, t)

and the compress the resulting vector {I"/}"_, we obtain the theoretical
compressed signal as

N
v = 34 e 200 e0,0
k=0 2
(19)
+ Filpg

By comparison with Eq. 5, we identify the kernel matrix G;(x,y) =
Stglxx — y,2Dt +u?), the shift vector ; = 0, and w(y) = c(y,0)+
IG. We remark that in this case there is no need to estimate the background
value to infer diffusion, as its contribution is incorporated into the initial
perturbation w(y). Moreover, even if the width of the point-spread function
u is not known, in practice we can set this parameter equal to Ax, the pixel
size. Indeed, we found that the average and the variance of the estimated
parameter distribution are not affected by this choice as long as the true
value of the system g .21 (see Fig. S4). We obtain the kernel matrix
from Eq. 8 as

NIU[
Ki; = Z FiyFje 50 g (. — x, 2Dt + 1) + ),
KI=0

(20)

2956 Biophysical Journal 124, 2941-2960, September 16, 2025

from which it is possible to compute k(0 = ZN”" F (q,( ) ( VE (qft)7
ADyemetwtn)2g(: — yO 2D (1 +4) +p2), with € € {1, 2}, and Upg
with Eq. 11. Finally, we infer the diffusion coefficient Deg by minimizing
the cost function (Eq. 13).

Inference in the case of reaction-diffusion with
photobleaching

Now we consider the underlying model to be a linear reaction-diffusion
PDE (Eq. 2) and photobleaching during imaging not to be negligible, i.e.,
e # 0. Following the same approach as in the previous section, the theoret-

ical compressed signal takes the form
ﬂfk> +e*ﬁf1< /dy g

Niot a
-
YiTH = Z Fzﬂke &'k <ﬁ — e
]R2

k=1

(% — 2Dt + %) (c(y,0) — a/B) | + Firlsa

@n

In this case, the set of parameters to a priori estimate from our method is
listed in Table 4. By comparison with Eq. 5, we identify Y7* and we obtain
the kernel from Eq. 8

Niot

Z FiiFje” (fﬁrﬂ)(fﬂrt!)g
=y (22)

(Xk — X, 2D(fk + t]) +//l2)

and

N, mt

{ zka/ﬂ (1 —e)e %‘FF[,IJBG}-

k=1

hi(ang) =
(23)

We note that /;(a, f) is defined at § = 0 by continuity using limp_o(1 —
exp (— p1,))/p = t. From Eq. 22, we deduce k) = ZN”’ (ql(f)7
xie))ﬁ(qgf),,vl(f))e‘ e+p)(+1)/2 g(xf) - y}e), 2D(t +1;) +42), with € € {1,
2}, and Ug with Eq. 11. Finally, the cost function defined in Eq. 13 can be mini-
mized with respect to the kinetic parameters D, a, 5, and Igg. Since Iz and a
are linear parameters, the values, /39 and a;,, which minimize the cost for

> “min

fixed D and f# can be obtained analytically as

r N N -
[/ 1
o1 | St b
min _ i= i=0
Qmin N N
|2 Vsl D ey
— =
[ N N
Z T, YDAT Z YDATA
Li=0 i =
where [Jgg|; = 0j,,7iand [J,]; = 0,r; are the Jacobian of the residuals (7)

with respect to Igg and a taking the form



TABLE 4 Parameters of signal acquisition model and of PDE

Isc Background signal

u width of point-spread function
€ rate of photobleaching during imaging
D diffusion coefficient
a source rate
y/] exchange (or dissociation) rate
N Niot
— +
[JBG]i =4 Z [K ]i,/ Z Fjx
i=0 k=0
(25)
N Not a
_ + —p — £
U, = A) KT FMB (1 — ¢ /) im
i=0 k=0
So, the cost in Eq. 13 is computed directly at Isg = 2% and @ = amin

and minimized numerically with respect to D 3, and ¢, yielding the final es-
timations Deslv ﬂeg[s Eests Ifs? = [ﬁﬁ\ (Deshﬁesu eesl), and dest =  QAmin (Dest7

ﬁesu geSl)'

Improving parameters estimation using extra-
information

Even though we can estimate all parameters in Eq. 21, knowing a priori the
background and the photobleaching decay rate can improve the estimation
of model parameters Deg, Qe and . For this reason, it is important to
take advantage of information available beyond the FRAPped area. A sam-
ple-free area gives access to the background /g by averaging the signal
over this area. The photobleaching loss rate can be extracted from a region
of the sample far enough from the FRAPped area, by an exponential fit ~
e~ to the spatial average signal over this area. Moreover, if a pre-FRAP
image is present, we can obtain the stationary concentration ¢, by averaging
the signal over the area that is later FRAPped. This value sets the ratio be-
tween the exchange and source rate, ¢, = a/f. This a priori information
can be integrated in the computation of the kernel and shift terms. In
Table 5, we recapitulate the kernel and shift terms for all experimental con-
ditions: with or without photobleaching, with or without an unfrapped con-
trol area, with or without a sample-free area, and with or without
prebleaching images. It is important to remark that when photobleaching
is absent and no background area is available, the contribution to
the signal intensity of the source rate a and the background value /g cannot
be distinguished. In such cases, HIFRAP can only estimate the combined
parameter a* = a + flpg. To determine « separately, the user must obtain
the value of Igg from independent experiments.

Numerical implementation

In this section, we describe the numerical implementation of HiFRAP using
SciPy and NumPy package in Python. We wrapped the corresponding
scripts in an ImagelJ plugin also called HiFRAP.

We begin with the calculation of the cost function, which requires
computing the inverse of a matrix (K + /Ild)fl (or its expression with Ug
in Eq. 12). This is achieved using the Cholesky decomposition. Specifically,
we first compute the Cholesky factor L using scipy.linalg.lapack.dpotrf.
The inverse, L~ !, is then obtained using scipy.linalg.lapack.dtrtri, which
takes advantage of the triangular shape of L using a recursive block algo-
rithm. Finally, the pseudoinverse is given by (K +4ld)™' = L~TL™.
To obtain the threshold 4, the first eigenvalue is calculated by Lanczos bi-
diagonalization using scipy.linalg.svds.

To minimize the cost function (Eq. 13) with respect to D, f, and/or
e, we first determine an appropriate initial condition for these param-

Inference method for imperfect FRAP

eters to start from the numeric algorithm. In this context, we suppose
the typical relaxation time of diffusion 7, = ]EJ—D dissociation rate
13 = log(2)/p, and/or photobleaching f, = Arlog(2)/e to be equal
to half of the total observational window 7. Since the typical bleach-

ing size € is not known, we approximate this value €~L/2, where L is

the total spatial window. These yields as initial parameters
Din = (L/2)*/16/T (or (L/2)*/8/T in 1D), f;,, = log(2)/T, and/or
. log(2)Ar
mo= T

Next, the full reflective trust region algorithm is applied as implemented
in scipy.optimize.least_squares(method = ‘trf”). Optimization is performed
by restricting the parameter ranges according to the spatiotemporal obser-
vation window, as parameter values outside these ranges would be physi-
cally meaningless. For the diffusion coefficient D, we impose that the
timescale associated with the slowest Fourier mode, of order L2 /D (where
L denotes the total spatial window), must be larger than 5A¢, ensuring suf-
ficient temporal resolution. Conversely, the timescale associated with the
fastest Fourier mode, of order (L/n,)* /D (with n, the highest wavenumber
considered), must be smaller than 407, where T denotes the total temporal
observation time. For the exchange rate 3, whose characteristic timescale is
of order 1/f, we constrain § such that — T <1/ < 100T. Here, negative
values of 1/f are allowed, as they can arise when the empirical error
APy is comparable with the true value f,;,.. For the photobleaching decay
rate &, we require that it is not negligible over the temporal window, restrict-
ing its values such that 1007 < 1/ < T/15. During the optimization proced-
ure, convergence is considered achieved when the relative variation in the
estimated parameter vector 0 between successive iterations satisfies
|a6/8]| <10-4.

Once the minimum of the cost function is found, the Hessian is computed
using the Jacobian of residuals r; (5) divided by the square root of the trace
Ji = Va(r,-(é) / N(ﬂ(a) ), using the approximation Hx YN J; ® J;, as
implemented in the reflective trust region numerical method. The
Jacobian is computed numerically by taking a finite step of the order of
107 20, which corresponds to the typical noise error, except that the deriv-
atives with respect to the source rate are computed analytically from Eq. 25.
Finally, to evaluate the goodness of the fit, the null matrix @ is obtained by
computing the eigenvectors and eigenvalues of K or Uy using the SVD as im-
plemented in numpy.linalg.svd.

Artificial data

Artificial concentration fields c¢(x, ) were obtained by solving analytically
the reaction-diffusion Eq. 2 (or the diffusion Eq. 1), with known param-
eters Dyye, Qyue, and B,.,.. The initial condition describes a square
FRAPped profile,

L ¢ L ¢

W~ Ac if v — Z)<—and|y — Z|<=

c(,7.0) = 13 c if |x 2|<2an ly 2|<2
¢y else,

(26)

where Ac/cs is the proportion of bleached fluorophores and € is the
square side length. To get the signal vector, the concentration solution
was multiplied by a factor A and convoluted with a Gaussian function
of width . to mimic the effect of the point-spread function. Photo-
bleaching during imaging is readily accounted for by multiplying the so-
Iution by an exponentially decaying function with rate ey.. The
background value /B8 was added to the resulting signal. The theoretical

true
data vector takes the form

Etrue l
IPATA = Aem s (cS — A[eﬂlf“C"El//(x,i”)l//(x,(f))) + 188

@7
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TABLE 5 Summary of the kernel and shift term formulas for each model under different experimental conditions

Model Prebl. Photobl. Back. Kernel Shift term
D yes/no no yes/no gl — x,2D(ty +17) +4?) /
D yes/no yes yes/no £ (t Isc
- + 1)
e At g(xk — )([.,ZD(Z/C -‘rl[) -th)
RD/R yes no no e Pt g (e — x1,2D (1 +1;) +u?) Lot
RD/R yes yes no e Mt g (s, — x,2D (1 +1;) +4%) Cus e
I‘me At+lB(](1 — e At)
RD/R yes yes/no yes £ £
—(p+ ) =1
e ( A “elu — x,2D(1 +1) +4) ce AL I
RDR no no no eI gl — 0, 2D (5 1) +47) @B — e )
RD/R no no yes e Pt g(xy — x,2D(t; +1)) +44?) a/p(l — e M) +Igg
€ €
RD/R no yes yes/no —(#+ ) (n+n) — 0,2D (1 +1) +44)

——t
e A e(n alp(l — e M)e AL* Iy

From left to right: model (diffusion, D; reaction, R; or reaction-diffusion, RD), presence of prebleaching images (yes or no), whether imaging induces
photobleaching (yes or no), whether a sample-free background area is available (yes or no), and corresponding kernel and shift term (without compres-
sion for ease of notation). The diffusion coefficient, D, and exchange rate, f3, are always estimated by numerical minimization of the cost function or set
to zero in the formulas when not included in the model. The background signal, Ipg, is estimated by averaging the signal in the background area when
this information is available; otherwise, if /g appears in the formula, its estimated value is determined through analytical minimization of the
cost function. The stationary concentration (in arbitrary units), cy, is estimated by averaging the prebleaching images and subtracting the background
Izc when both prebleaching and background areas exist. When the background does not exist, the average prebleaching signal corresponds to /i, the
sum of the background signal and the stationary concentration. The source rate, a, is determined via analytical minimization of the cost function or a
posteriori as dest = ¢5/fes When ¢ is known, or as dest = (liot — I )/Pest When the background is estimated through cost minimization. In the other
cases (third and sixth rows), it is not possible to estimate directly a but only the parameter a* = a + flg; from analytical minimization of the cost
function (sixth row) or a posteriori from a}, = liotfe if lior is known (third row). The photobleaching decay rate e is either computed from the
control area when present or by numerical minimization of the cost function. At is the time interval between two images while the function g is defined
in Eq. 17.

with Experiments
x(p) B ﬁ The Schizosaccharomyces pombe strain mtl2-GFP:ura4" (identifier RN21
»\ _ ¢ k 2 (12)) was used for experimental validation of the method. Standard fission
Y\ X = er AD. 1 £ Dol £ 212 yeast methods and media were used (64). The cells were grown in YESS
rue true

liquid culture overnight at 25°C, diluted in fresh medium and grown to
e an optical density (ODggo) between 0.4 and 0.6 before live-imaging. Cells

X/Ep) + = were imaged on EMM (minimal medium) 2% agarose pads at room temper-
— erf 2 ature (22-25°C); EMM shows reduced background noise in comparison
A/ 4D ety + Zﬂlzme with YE5S agarose pads. Cells were imaged at their bottom surface, close

to the coverslip. Images were acquired with a 100x oil-immersion objective
(CFI Plan Apo DM 100x/1.4 NA, Nikon, Minato City, Tokyo, Japan) on an
inverted spinning-disk confocal microscope equipped with a motorized
stage and an automatic focus (Ti-Eclipse, Nikon, Minato City, Tokyo,

)
where the error function is defined as erf(x")) = %{ I e "drand Al =

AAc the signal drop-off. The stationary concentration ¢ is fixed for pure
diffusion, whereas for reaction-diffusion, ¢; = Qe /Piye- The same pro-
cedure was applied for a Gaussian bleaching profile, X shape, and E shape
(obtained by translation, rotation, extension, and superposition of square
bleaching profile).

To obtain a realistic data set we add noise to the deterministic solution,

I = 1T 4 N, (28)

where 5 is noise amplitude and N, is sampled from a Gaussian
random variable of mean zero and standard deviation 1. Finally, we
compress the simulated vector (Eq. 27) using the compression operator
C (Eq. 3).

Unless specified otherwise, we used the following default values: n, =
121, n, = 16, €/(n,Ax) = 3, pype/Ax = 1, y/AI = 0.25, Ipgg/
Al = 0.5, ¢g/AI = 2 with Ax = 1, At = 1, Al, A = 1 in arbitrary
units; for diffusive systems Dyye = 262/16/(11, —1)/At or Dipe = 762/
16/At/(n, — 1) (if photobleaching is present) and f,, = 0; for reaction-
diffusive systems D = 7/2€/16/ (1, ) /AL, e ~PuneCs: e = 7/
21og(2)/(n, 4)/At; if photobleaching is present &pe = 1/(n, — 1) other-
wise ggue = 0
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Japan), a Yokogawa (Musashino, Tokyo, Japan) CSUXIFW spinning
unit, a Prime BSI camera (Teledyne Photometrics, Tucson, Arizona) and
an iLas2 module (GATACA Systems, Massy, France) for FRAP. During
FRAP, a 0.4 ym square ROI was bleached with the 491 nm laser at 20—
60% power and 30 repetitions and the fluorescence recovery was monitored
for a time interval ranging from 7-10 s.

An online supplement to this article can be found by visiting BJ Online at
http://www.biophysj.org.
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