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Abstract

As cells organize spatially or divide, they translocate many
micron-scale organelles in their cytoplasm. These include
endomembrane vesicles, nuclei, microtubule asters, mitotic
spindles, or chromosomes. Organelle motion is powered by
cytoskeleton forces but is opposed by viscoelastic forces
imparted by the surrounding crowded cytoplasm medium.
These resistive forces associated to cytoplasm physcial
properties remain generally underappreciated, yet reach sig-
nificant values to slow down organelle motion or even limit their
displacement by springing them back towards their original
position. The cytoplasm may also be itself organized in time
and space, being for example stiffer or more fluid at certain
locations or during particular cell cycle phases. Thus, cyto-
plasm mechanics may be viewed as a labile module that
contributes to organize cells. We here review emerging
methods, mechanisms, and concepts to study cytoplasm me-
chanical properties and their function in organelle positioning,
cellular organization and division.
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Introduction

During cell division, polarization, and migration, cells
translocate and position large organelles in their crow-
ded cytoplasm. Cell division, for instance, is accompa-
nied by stereotypical translational and/or rotational
movements of the mitotic spindle in bulk cytoplasm, a
process key to instruct the size and position of daughter
cells [1,2]. Endomembrane networks and vesicles also
reorganize through directional movements as cells enter
mitosis, and micron-scale chromosomes translocate
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through the cytoplasm from the spindle centre towards
cell poles in anaphase [3]. Egg cell fertilization, kary-
ogamy, or polarized cell migration, are other exemplary
processes that involve the motion of large objects like
microtubule (MT5) asters and nuclei in the cytoplasm
[4,5]. Force exertion by M'Ts and F-actin cytoskeleton
needed to move organelles has been heavily discussed
[1,3—6], but resistive forces opposed by the surrounding
cytoplasm medium remain much less understood.

However, the cytoplasm is not a simple thin fluid, like
water. It is packed with proteins, RNA, ribosomes and
polysomes, endomembranes as well as cytoskeletal
polymer networks [7]. These endow the cytoplasm with
viscosities 11~ 100—1000X that of water, close to that of
castor oil. The cytoplasm also features solid-like prop-
erties, with elasticities of G~0.1—10 Pa, similar to a soft
hydrogel, and can as such spring objects back to their
original position [8—11]. For example, the displacement
of an object with a radius R of ~5 pum, like a nucleus, on
a distance, d, of a few microns in the cytoplasm shall
impart a reactive elastic force of F~6TGRd~ 100 s of
pN. These forces may be partially alleviated by rear-
rangements of elastic elements in the cytoplasm, but are
large enough to quench thermal or active random forces
and stabilize organelle position; and also to oppose and
limit organelle displacement being largely comparable to
forces measured # vivo during M'T aster, spindle, or
chromosome motion [12—14]. The cytoplasm thus
poses a fundamental challenge for cellular organization:
it has to be stiff/viscous enough to stabilize organelle
positions against thermal and metabolically-driven
agitation, yet soft and fluid to allow cytoskeletal tracks
and motors to transport organelles across cells. These
considerations raise fundamental questions on the ma-
terial properties of the cytoplasm, and on the mecha-
nisms that modulate its viscoelasticity or fluidity in time
and space, and on the overall function of cytoplasm
mechanics for cellular organization.

Scale-dependent cytoplasm rheology

The cytoplasm is viscoelastic, and its physical properties
are studied using the framework of rheology (see box).
However, as a composite material containing objects
ranging from nanometric proteins to micrometric or-
ganelles, cytoplasm rheology depends on the scale at
which it is being probed [7,15]. Tiny probes navigate
within cytoplasm gaps and only feel the resistance of
water-like cytosol, while larger objects may bump onto
cytoskeletal or membranous networks, feeling enhanced
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resistance. Accordingly, many methods were developed
to study cytoplasm rheology at different length scales in
live cells, which may be split into two categories: passive
and active rheology (Figure 1).

Passive rheology uses the tracking of injected or genet-
ically expressed tracers, whose diffusive properties
inform on the mechanical properties of the surrounding
cytoplasm (Figure 1a). For example, tracers will diffuse
slower if the cytoplasm becomes more viscous. Tracers
include fluorescently tagged endogenous protein com-
plexes or organelles, injected or engulfed particles, as

well as genetically encoded multimeric particles such as
GEMs and UNS [15—21]. Passive rheology has been
employed to study cytoplasm mechanics at a scale
ranging from ~10 nm to 1 Wm, in systems ranging from
bacteria and yeasts to stem cells and developing em-
bryos [16,18,22—25]. In many of these systems, tracers
exhibit sub-diffusive behaviours: the power dependence
of their mean squared displacement (see box) with time
lag is smaller than 1 [17]. This indicates caging effects,
caused by the presence of packed colloidal suspensions
(see box) in the cytoplasm, such as that formed by
ribosome particles [18], and/or reflects the presence of
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Methodologies to study scale-dependent cytoplasm material properties. (a) Tracking of diffusing tracers (green dots) in the cytoplasm, allows to
compute their mean squared displacement (MSD) as a function of time, and to assay if their motion is sub-diffusive (exponent<1), diffusive (exponent = 1),
or super-diffusive (exponent>1). (b) The bending and rotations of injected large passive silicon nanodevices allows for mapping the balance between
cytoplasmic forces and mechanical properties. Adapted from [28]. (c) Generation of cytoplasmic oscillatory flows, through local laser-mediated heating,
and concomitant tracking of the resultant tracer’s oscillatory displacement allows for extracting cytoplasm rheological properties. Adapted from [34]. (d)
Optical tweezers microrheology: a micron size dielectric particle is displaced with oscillatory forces created through light-scattering of a laser focused on
the particle. Tracking the resultant particle displacement over time allows to compute cytoplasm rheology. () Magnetic tweezers microrheology: an
injected magnetic microbead is displaced with a calibrated magnet tip in the cytoplasm, and its displacement over time is recorded to compute rheological
properties. (f) Formation of a large magnetic probe by embedding magnetic particles in an oil droplet injected in the cytoplasm. Adapted from [11].
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viscoelastic cytoskeletal or membranous networks [20].
These caging or elastic effects become more pro-
nounced for larger tracers, but are alleviated by meta-
bolic or motor-driven activity that agitates and fluidizes
(see box) the cytoplasm to limit the build-up of gel-like
elastic behaviour [16,19,22]. The diffusive tracing of
positional fluctuations of larger components above the
micron-scale including MT asters, mitotic spindles,
nuclei, or injected large micro-fabricated probes, has
also been performed, allowing to analyse the balance
between active cytoskeletal forces and cytoplasm ma-
terial properties (Figure 1b) [13,26—28]. A key advan-
tage of passive rheology stands in its relatively simple
experimental implementation. Its limitations include
the difficulty of extracting exact values of cytoplasm
viscoelastic constants [29], and the often-spurious
effect of non-specific interactions of probes with cyto-
plasm elements that can affect the outcome of this
method [17,21].

Active rheology differs from passive rheology in that it
requires the application of a calibrated external force to
the probe. Optical tweezers are a well-spread tool for
active cytoplasm rheology. Forces are applied to dielec-
tric (usually glass) particles that range in size from about
100 nm to a few pm, through light scattering of a laser
beam focused on the particles. One advent of optical
tweezers is to enable the application of periodic forces
to probe rheology at multiple frequencies, which in-
forms on time scale-dependent cytoplasm mechanics
(Figure 1d). Its limitations stand in the relatively low
range of force and displacement amplitudes that can be
achieved. Frequency-dependent rheology has been
performed with optical tweezers in cytoplasm extracts
and  wivo in cell types including mouse oocytes,
adherent human cells, and stem cells [27,30—33].
These assays showed that the cytoplasm generally be-
haves more as a viscous fluid when probed at high fre-
quencies (small time scales) and more as a solid-like
elastic material at smaller frequencies (longer time
scales). Periodic forces have also been applied using
light-controlled oscillatory flows evidencing similar fre-
quency dependence of cytoplasm mechanics (Figure 1¢)
[34]. Magnetic tweezers is another important tool to
probe cytoplasm rheology which has a long history,
dating from the 1950s [9]. Forces and probe displace-
ments can be much larger than with optical tweezers,
and therefore viscoelastic responses are commonly
analysed from the shape of the probe displacement-time
curve in response to force, and of its recovery curve
when force is released (Figure 1e). In agreement with
frequency-dependent responses mentioned above,
displacement curves usually exhibit a first linear phase
reflecting a viscous fluid-like regime at short time scales,
that then inflects at longer time scales reflecting solid-
like elastic properties of the cytoplasm [9—11]. Mag-
netic probe size generally ranges from 100s of nm up to a
few wm, and was recently expanded to sizes up to
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30—50 pum in marine eggs, by embedding magnetic hy-
drophobic particles in large injected oil droplets
(Figure 1f) [11]. Overall, these analyses all underscore
size-dependent and time-dependent cytoplasm me-
chanics, reflecting a hierarchy of pore or mesh sizes, as
well as multiple time scales associated with the dy-
namics and turnover of diverse crowders.

Cytoplasm mechanics and organelle positioning

The function of cytoplasm mechanics has been widely
discussed at a small scale relevant to protein diffusion
and biochemical reactions [7,15]. However, it may also
have fundamental implications at a larger scale, to impact
the motion and positioning of many organelles. First, as a
viscous fluid, the cytoplasm will influence the speed at
which organelles move. For example, micron-scale chro-
mosomes segregate slower when cytoplasm viscosity is
increased within mitotic spindles [35]. Viscosity also sets
the global speed at which the cytoplasm will flow and
drag along organelles, in response to active stresses such
as those generated by actomyosin contraction [36].
Second, as an elastic solid, the cytoplasm will participate
in the force balance that determines organelle’s final
position. Consequently, in response to a constant force,
such as that generated by a network of cytoskeleton
polymers and motors, an organelle will initially move at a
constant speed, that will progressively reduce to even-
tually vanish when the organelle has moved a final dis-
tance set by the ratio of the force to cytoplasm stiffness.
The cytoplasm may also fluidize in response to force, so
that its effective elasticity decays with time, allowing
organelles to recover a constant moving speed at longer
time scales. For instance, when passive probes with a size
typical of a cargo vesicle or a nucleus are moved in the
cytoplasm with magnetic tweezers, their displacement
exhibit short-term viscoelastic and long-term fluidization
signatures [9—11] (Figure 2a). Using magnetic particles
that bind spindle poles, Xie et al. displaced entire
mitotic spindles in the cytoplasm of live embryos, and
obtained similar rheological responses [37]. An implica-
tion of such viscoelastic signature is that longer force
application will tend to prime the fluid-like response of
the cytoplasm, while shorter force applications will
favour an elastic response [11,30,37]. Therefore, the
cytoplasm may initially resist external forces applied on
organelles, but eventually yield by fluidizing to allow
their displacement during processes such as endomem-
brane trafficking, asymmetric division or polarization.

Several physical and biological parameters influence the
viscoelastic resistance of the cytoplasm. For instance, if
an organelle features many large pores, its permeability
(see box) will be relatively high, so that the cytoplasm
will be able to flow easily through the organelle, allevi-
ating resistive forces (Figure Zb). Nuclei or endomem-
brane vesicles are typical impermeable organelles. MT
asters or spindles, which are built from MT fibres may
appear more porous or permeable. However, numerical
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Cytoplasm viscoelastic resistance during organelle motion. (a) The cytoplasm is viscoelastic at short time scales and fluidizes at longer times. Hence
the displacement of an organelle moved in response to an external force such as that of a cytoskeletal network, follows an initial viscoelastic inflection
followed by a linear regime. When force is released, the organelle moves back towards its initial position, reflecting the elastic nature of the cytoplasm.
Organelle displacement also creates large-scale cytoplasm recirculation flows whose direction and amplitude depend on cellular boundaries. (b) If the
organelle is porous or permeable, the cytoplasm will also flow through the organelle, which will alleviate resistive forces exerted by the cytoplasm on the
organelle. (c) Viscoelastic resistance of the cytoplasm increases nonlinearly with the size ratio of the organelle to that of the cell because of hydrodynamic
interactions that couple the organelle with the cell surface. (d) Hydrodynamic interactions also render cytoplasm viscoelastic resistance dependent on the
initial position of the organelle, with organelles closer to the surface being harder to displace.

studies suggest that MT filaments interact with each
other through hydrodynamic interactions (see box),
which effectively restricts cytoplasm fluid penetration
between MTs, thereby reducing the permeability of
these assemblies [38]. Asters and spindles also recruit
endomembrane, intermediate filament and F-actin
networks, which may further reduce their pore size and
effective permeability [39,40]. Accordingly, the fric-
tional drags (see box) of asters and spindles in the
cytoplasm were measured directly 7 vivo to be close to
that of impermeable objects [13,37].

Hydrodynamic interactions through the cytoplasm fluid
may also couple organelles to the cell surface. The
presence of cellular boundaries creates backflows that
enhance cytoplasm viscoelastic resistance on moving
organelles. This effect will be stronger if the fluid ad-
heres or sticks to the organelle and the cell surface [11],
and is also predicted to be larger during translational

versus rotational motions [38]. This distinction is
attributed to the tangential versus orthogonal movement
of the fluid relative to the cell surface [38], and may
facilitate mitotic organelle rotations as compared to
translations in the cytoplasm [37]. Importantly, this
enhancement by cellular boundaries becomes dispro-
portionally more pronounced as organelles increase in
size (Figure 2c). It reaches up to ~10—15x when or-
ganelles are ~60 % of cell size, and diverges to infinity
when their size approaches that of the cell (Figure 2c).
This is because the cytoplasm fluid has less and less
space to flow around organelles, much like in a piston.
This confinement effect was proposed to influence the
mobility of many large organelles, including nuclei, M'T
asters, or mitotic spindles [13,37,38,41]. Similarly, or-
ganelles positioned initially closer to the cell periphery
may also experience higher cytoplasm resistance
(Figure 2d) [11,28]. As a consequence, cell geometry
could impact cytoplasm resistance, as an organelle

Current Opinion in Cell Biology 2023, 85:102278

www.sciencedirect.com


www.sciencedirect.com/science/journal/09550674

moving in a tube-like cell such as a columnar epithelial
cell, would face large resistance, given the little space
left for the fluid to move around it [42]. Interestingly,
numerical models indicate that such position-dependent
viscoelasticity could in principle induce a directional
displacement of large organelles [28], or the local accu-
mulation of smaller particles [43]. Yet, it remains to be
tested if position-dependent effects dominate over
established gradients of cytoplasm activity that can
propel large cargos-like nuclei [27]. In conclusion, the
viscoelastic properties of the cytoplasm are predicted to
affect the motion and positioning of many organelles,
with resistive forces that will depend on several biolog-
ically controlled parameters including duration and
magnitude of force application, organelle permeability,
size, or initial position.

Spatiotemporal regulation of cytoplasm mechanics
Cytoplasm mechanics can vary in space and time, as
cells proceed through cell cycle phases, differentiate or
organize spatially. For example, cytoplasm elasticity and
viscosity both exhibit a transient peak at the onset of egg
fertilization, and decay few minutes after [44]. In
adherent human cells and marine zygotes, the cytoplasm
was also shown to be stiffer and more solid-like during
interphase while rather soft and fluid-like in mitosis
[32,44]. Differences in cytoplasm elasticity have been
suggested to prime diverse mouse stem cell lineages
[33], or mark the entry into dormancy in yeast cells
[19,25]. Cytoplasm mechanics can also be highly
heterogenous within individual cells, with e.g. stiffer or
more fluid zones [45,46] (Figure 3).

Spatiotemporal modulations of cytoplasm mechanics are
often caused by variations in cytoskeletal organization or
dynamics. MTs, for instance, assemble cell-spanning
stable asters in interphase, that become short and dy-
namic in metaphase [47]. These stable interphase M'Ts
form stiff viscoelastic networks that store and restore
clastic energy through filament buckling or bending
(Figure 3a) [14,48]. Accordingly, the cytoplasm was
measured to be much stiffer within interphase MT
asters as compared to outside asters in marine eggs [44].
In contrast, during mitosis, M'Ts become dynamic and
exhibit rapid growth and shrinkage rates and were shown
to rather function as fluidizers and softeners of the
cytoplasm, in multiple systems (Figure 3b) [11,49—51].
This state-dependent M'T contribution to cytoplasm
mechanics was proposed to account for temporal varia-
tions in cytoplasm rheology between interphase and
mitotic human cells [32,44]. Mitotic MTs and associ-
ated motors may also structure the cytoplasm and
generate local crowded islands that concentrate many
mitotic regulators around spindles [52,53].

F-actin is another generic conserved modulator of
cytoplasm mechanics (Figure 3c). It forms bulk
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meshworks that can span the cell interior [54]. These
are generally more dilute and softer than those formed
at the cell cortex. They behave as tuneable viscoelastic
gels with viscosities and elasticities that depend on
filament density, crosslinking, or turn-over among other
parameters [55]. F-actin was shown to contribute to
cytoplasm viscoelasticity, at scales ranging from 100 nm
up to tens of m, in systems including yeast, vertebrate
adherent cells, stem cells, and large zygotes [11,18,22,
32,33,46]. F-actin meshworks can also fluidize or soften
in response to applied forces, much like the cytoplasm
does [56]. These bulk F-actin networks evolve during
the cell cycle, being generally denser and stiffer in
mitosis [32,57]. F-actin may also regionalize cytoplasm
mechanics. In adherent cells, the lamella, a zone
enriched in cross-linked bulk F-actin, was shown to be
stiffer than the rest of the cell interior [45,46]. In
marine zygotes, F-actin partitions away from MTs of the
mitotic spindle, generating a stiff outer zone that con-
tributes to holding spindles in place, and a soft inner
zone plausibly facilitating chromosome segregation
within spindles (Figure 3e) [37]. In large eggs, bulk F-
actin disassembles locally along a plane defined by sister
MT aster interaction, to soften the cytoplasm there and
facilitate cleavage furrow ingression (Figure 3e) [58].
The interaction between MTs and F-actin may thus
serve as an important module to tune cytoplasm me-
chanics around cells.

Endomembranes also form dense networks and suspen-
sions that have been proposed in a few instances to in-
fluence cytoplasm mechanics [20,46]. Marine eggs are for
instance packed with Yolk granules, which can occupy a
volume fraction of the cytoplasm from 20 % up to 70 %
[59]. These granules form a suspension of large crowding
colloids that was suggested to contribute to the large-
scale viscosity of the cytoplasm [60]. At high volume
fractions such suspension is also predicted to jam (see
box) and participate in the elastic behaviour of the
cytoplasm [61]. The endoplasmic reticulum (ER) is
another abundant compartment made of tubules and
cisternae, that can span the cell interior [40]. Being much
softer than the cytoskeleton, the ER may not contribute
to the elasticity of the cytoplasm [62], but has been
suggested to act as an important viscous agent that can
dampen cytoplasm deformation [63] or slow chromosome
segregation (Figure 3d) [35]. The ER may also function
as an important sieve to segregate cytoplasm particle
suspensions based on size, contributing to regionalize
cytoplasm mechanics around structures like the mitotic
spindle (Figure 3f) [37,49,52,64]. Overall, cytoplasm
mechanics evolve hand in hand with cellular spatial or-
ganization. Cytoskeletal and endomembrane networks
define regions or time windows with different cytoplasm
mechanical properties. These properties in turn feedback
on important cellular functions including mitotic spindle
positioning [37], chromosome segregation [35], cleavage
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Cellular spatial organization and regional cytoplasm mechanics. (a) Microtubule networks exhibit viscoelastic properties and can store elastic energy
through filament buckling for instance. (b) MT dynamics and transport may serve as local fluidizers of the cytoplasm. (¢) F-actin meshworks contribute to
the viscoelastic properties of the cytoplasm, and can exhibit changes in architecture, density, or turnover that may modulate cytoplasm mechanics in time
and space. (d) The Endoplasmic reticulum (ER) may enhance cytoplasm viscosity, and is excluded from the inner region of mitotic spindles to facilitate
chromosome segregation. (e) F-actin is disassembled at the interface between anaphase asters, generating a soft cytoplasm path that may facilitate

cleavage furrow ingression. (f) The Endoplasmic reticulum (ER) may contribute to soften the interior of the mitotic spindle space by excluding particles

larger than its pore size.

furrow ingression [58] or alter the diffusion or advection
of smaller components like proteins and macromolecular
complexes [49,51,52].

Conclusion

Although organelle positioning and cellular organization
have been studied for decades, our appreciation of the
regulation and function of the surrounding cytoplasm
medium in which reorganization takes place remains
fragmented. One important difficulty stands in

attributing cytoplasm viscoelastic properties at different
scales to a given cellular component or network. As
discussed above, cytoskeletal, endomembrane, colloidal
suspensions and energy-driven processes are all poten-
tially contributing to determine cytoplasm mechanics,
but whether they act as additive layers, or in a more
interacting and non-linear manner remains unclear.
Therefore, a classical inhibitor or genetic approach may
not be sufficient to address the complexity of cytoplasm
rheology. Rather, cytoplasm fluid mechanics may be best

Current Opinion in Cell Biology 2023, 85:102278

www.sciencedirect.com


www.sciencedirect.com/science/journal/09550674

studied by combining physical measurements, detailed
imaging of cytoplasm organization and dynamics, and
modelling. The field is now armed with a plethora of
rheological methods to probe cytoplasm mechanics at
multiple time and length scales (Figure 1). In addition,
emerging methods in electron microscopy now allow to
image the whole cell interior at high resolution and in
three dimensions [65]. Many lines of models also allow
to simulate cytoplasm composition and mechanics [66],
accounting for complex hydrodynamic interactions
[11,38] or the presence of multiple diverse agents
[63,67]. Finally, we propose that a bottom-up approach
based on reconstituting cytoplasm complexity, from
diverse cytoplasm extracts for instance [31,68], may
help dissecting the role of different elements or their
potential interactions in determining cytoplasm com-
plex rheology.

In addition to influence organelle positioning, for cell
polarity or division positioning, cytoplasm mechanics may
have broader implications for morphogenesis. First,
cytoplasm viscoelasticity may help cells sense or resist
external forces in tissues [15]. Second, global or more
local cytoplasm physical properties may contribute to
dynamic shape changes by affecting rates or amounts of
cell deformations [69], or processes such as cell sorting
[33] or cell migration [70]. Finally, cytoplasm mechanics
has been proposed to be relevant to fate determination
[33,71], suggesting that spatial heterogeneities in cyto-
plasm properties among cells in tissues could prime local
differentiation and impact multi-cellular morphogenesis.

GLOSSARY BOX

Viscoelasticity: The material property of a medium
that exhibits both viscous (fluid-like) and elastic (solid-like)
deformation when submitted to an applied stress.

Rheology: The study of the deformation or flows of
materials in response to applied stress.

Mean Squared Displacement (MSD): Average squared
distance of a particle with respect to a reference position
over various time lags representing its diffusive properties.

Colloidal suspension: A stable mixture of microscopically
dispersed insoluble particles suspended throughout another
substance such as a fluid.

Fluidization: Rearrangement of an elastic medium in
response to force application leading to a decay in the
material elasticity and to flows and dissipation.

Hydrodynamic Interactions: Mutual long-range interactions
that couple objects moving through a fluid arising from their
respective motion and the resulting flow pattern.
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Permeability: A property of porous materials that
measures the ability of fluids to flow through them.

Drag: Frictional resistive force experienced by an
object moving at a given speed through a viscous fluid.

Jamming: Disordered particle transitions from a flowing
state to a solid-like state due to increased density or
external forces leading to the loss of mobility and high viscosity.
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