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A B S T R A C T   

In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tis
sues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to 
ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation 
regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue 
homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are 
particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very 
attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. 
Although epithelial cell division has been the subject of intense research for many years in multiple models, it 
still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge 
on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance 
in developmental biology and physiopathology.   

1. Introduction 

The primary functions of the intestinal tract are digestion and ab
sorption of nutrients while forming a barrier against luminal pathogens. 
It can be anatomically divided into the small intestine and the colon, 
where the small intestine can itself be segmented into the duodenum, 
jejunum and ileum. The intestinal lumen is lined with a cohesive, 
polarized simple columnar epithelium that covers upwards finger-like 
protrusions into the lumen called villi, downwards invaginations 
called crypts. Villi are differentiated compartments that serve to in
crease surface area to maximize absorption function. Crypts constitute 
the proliferative compartments. In the small intestine, intestinal stem 
cells (ISCs) reside in the niche at the crypt bottom, where their self- 
renewal capacity is promoted by niche Paneth cells and stroma cells 
[1–7]. Most of their progeny migrate upward the crypt to become transit 
amplifying (TA) cells that are simultaneously committing and prolifer
ating. As they reach the villi, TA cells will differentiate into specialized 
absorptive (i.e. enterocyte) or secretory (i.e. enteroendocrine cells, 
goblet cells or tuft cells) lineages and further mature as they migrate 

towards the tip of the villi where they are eventually shed into the gut 
lumen. Altogether, it takes only 4–5 days for a cell to exit the stem cell 
niche and die at the top of the villus, making the intestinal epithelium 
one of the most actively self-renewing tissue in adult mammals [8]. 
Thus, cell division taking place in the crypt is crucial to: 1) constantly 
replenish the intestinal epithelium and 2) sustain proper expansion and 
functional integrity of the crypt. In this review, we will discuss the 
mechanisms that regulate cell division rates and orientation in the small 
intestine, as well as their impact on intestinal homeostasis. 

2. Cell division compartmentalization in the intestinal tissue 

2.1. Spatio-temporal distribution of dividing cells during intestinal 
development 

Acute morphogenetic events drive intestinal morphogenetic devel
opment along with a compartmentalization of proliferative cells. In 
addition to expanding the villus structure to increase the exchanging 
surface between enterocytes and the gut lumen, crypt compartments are 
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defined, giving rise to the canonical functional unit of the intestinal 
tissue named crypt-villus axis (Fig. 1). Intestinal morphogenesis starts 
between E10.5 and E14.5. During this developmental window, the 
growing intestine can be described as a tube where the epithelial layer 
displays a pseudostratified aspect [9]. Proliferative cells are homoge
nously distributed as a push of proliferation occurs in almost all 
epithelial cells, and the mean cell cycle time is 16 h [10]. Villus struc
tures start emerging at day E14.5 under the control of Hedgehog (Hh) 
and Bmp signaling pathways and the proliferation of subepithelial 
mesenchymal cell clusters [11–13]. The later locally modify shape of the 
above epithelial monolayer and activate cell division there [12,14]. 
Gumucio’s lab further proposed that cell division directly participates to 
the initial stage of villus formation [14]. Although dividing cells exhibit 
an elongated cell shape in the pseudostratified epithelium, rounding of 
mitotic cells occurs during the villification time window. Subsequent 
pulling forces and invagination of the apical surface consecutive to 
mitotic rounding may constitute the first steps of monolayer deforma
tion and epithelium folding that will trigger villus formation [14]. 
Concomitantly to villus formation, proliferating cells become restricted 
to the intervillus region. Remaining Bmp secreting cell clusters at the tip 
of the villus or specific activation of Wnt at the intervillus region may 
explain why dividing cells specifically pattern in the intervillus region 
[11,15]. 

Crypt formation occurs late during intestinal development. It takes 
place during gestation in humans (weeks 11–12 [16]) but during the 
first days after birth in mice [17,18]. Driving mechanisms that spawn 
crypt growth are subjected to conflicting views. This morphogenetic 
process may be initiated by remodeling of the intervillus region likely 
through the action of subepithelial myofibroblasts [19,20], or tissue 
invagination of the intervillus area as recently described by Lechler and 
colleagues [18]. In their study, the authors showed that crypt initiation 
depends on myosin-II activity and that crypt expansion on Rac1 activity 
[18]. Moreover, crypt curvature has been proposed to be self-generated. 
In this scenario, Wnt signaling may induce a positive curvature, and the 

positive curvature would in return reinforce Wnt activity [21]. More 
recently, Liberali and colleagues reported that in in vitro intestinal 
organoids, initiation of crypt formation results from a 
symmetry-breaking step which is concomitant to the appearance of 
Paneth cells, under the control of Wnt signaling. This 
symmetry-breaking phenomenon would be triggered by the local tran
sient activation of YAP1, down-regulation of Notch signaling and sub
sequent Paneth cell generation [22]. However, it is important to note 
that Paneth cells appear only late during crypt maturation (between P7 
and P14 [23,24]) in the mouse intestine. Thus, in contrast to the orga
noid model, if crypt formation requires Wnt signaling, this should 
involve additional cellular mechanisms other than Paneth cells in vivo. 

2.2. Organization of dividing cell populations in adult crypts 

In physiological conditions, cell division is restricted to crypt com
partments in adults, and epithelial proliferation is sustained by two 
subsets of cells: ISCs and progenitors TA cells [8,25] (Fig. 1). However, 
the current model proposes that two stem cell populations may coexist 
there. First, mitotically active ISCs are responsible for the bulk of cell 
cycling and homeostatic maintenance at the bottom crypt [8,26]. H. 
Clevers and colleagues pioneered this field of research and demon
strated that active ISCs express the receptor leucine 
rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) or Grp49, a 
Wnt target gene [3]. Since then, Lgr5 has been proposed as a reliable 
marker for epithelial stem cells in other tissues such as the stomach [27], 
the colon [28], the skin [29], the uterine glands [30] and satellite cells 
[31]. 

Lgr5+-ISCs are massively found during the vilification at E15.5, and 
their number decreases at E18.5 when they become confined to the 
intervillus region [32]. It is thought that Lgr5 would restrain Wnt acti
vation during intestinal development [32]. After birth and during adult 
life, Lgr5+-ISCs are restricted to the crypt bottoms [17], where they 
divide every 21.5 h on average [33] and their number constantly 

Fig. 1. Scheme depicting the homeostatic and pathological cell composition of the crypt compartment.  
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decreases with aging of the individual [17]. In contrast, in vitro exper
iments showed that during organoid early growth, ISCs stop expressing 
Lgr5, which become upregulated later on concomitantly with Paneth 
cell differentiation and crypt formation [22]. 

Lgr5+-ISCs are small columnar cells interspersed with differentiated 
Paneth cells which are niche cells located at the base of the crypt [1,4, 
34,35] (Fig. 1). Paneth cells have been described to appear in the first 14 
days after birth in mice, when crypts mature and multiply through 
fission event [23], and to remain stable up to 2 months [36]. Impor
tantly, Paneth cells provide a short-range stemness signal, as they 
secrete growth factors required for ISC physiology such as Notch, EGF or 
Wnt ligands [4,37]. Thus, the way ISCs divide and re-intercalate be
tween Paneth cells in the crypt base would be instrumental for their 
self-renewal capacity. In this context, McKinley and colleagues recently 
proposed that Paneth cells intercalate between ISC daughter cells at the 
end of cytokinesis in mouse organoids [38]. 

The second subset of ISCs, namely “reserve” or “quiescent stem cells” 
(QSCs), have been proposed at the + 4 position above the crypt base and 
would express Bmi1 [39], mTert [40], Hopx [41] and Lrig1 [42] (Fig. 1). 
+ 4-QSCs would divide slower than Lgr5+-ISCs and would be required 
for intestinal tissue replenishment and repair after damage or injury [40, 
42–44] (Fig. 1). However, the specificity of marker expression such as 
Bmi1 in + 4-QSCs is now controversial [45,46]. In addition, this exis
tence of these + 4 reserve cells is an ongoing debate. TA cells and 
+ 4-QSC cells may constitute overlapping cell populations, as 
lineage-committed TA cells are also able to regenerate the epithelium 
[47,48]. Moreover, transcriptional analyses of embryonic progenitors 
have revealed that distinct subpopulations give rise to Lgr5+-ISCs, which 
may explain the heterogeneity of ISCs in adults [49]. Additional studies 
have also supported cellular plasticity and re-activation of a fetal-like 
program to sustain tissue repair in colitis model [50] or after parasite 
infection, for instance [51]. Along this line, A.Gregorieff and colleagues 
have uncovered at the crypt bottom the existence of rare stem cell 
subtype so called “revival stem cell” that exhibit high level of Clusterin 
expression and are quiescent in homeostatic conditions. Under intestinal 
damage, they are transiently overproduced in the crypt in a 
YAP-dependent manner to reconstitute the Lgr5-ISC pool and repair the 
epithelium [52]. In a similar manner, pericryptal fibroblasts in the 
mesenchyme induce the expansion of a Sca-1+/Clusterin+ - revival-like 
stem cell population for the activation of tissue regeneration program or 
tumor initiation [53]. 

The second subset of mitotically active cells in the intestinal 
epithelium are TA cells which derive from Lgr5+-ISC divisions [54] 
(Fig. 1). TA cells are generated to continuously replenish the homeo
static epithelium. Several rounds of division (4− 5) of 12 h on average 
occur in this tissue zone, and TA cells would generate up to 300 cells per 
crypt per day. They remain in the crypt for 48 h on average and then go 
towards terminal differentiation when crossing the crypt-villus bound
ary [55,56]. 

In addition to the classical mouse model, alternative animal models 
have emerged for the study of dividing cells in the intestinal tissue. In 
zebrafish (Danio renio) and teleost fish medaka (Oryzias latipes), the in
testine does not display a tissue architecture as regular as the mamma
lian one but it exhibits tissue folds that may resemble the fetal villus in 
mammals. In this animal model, ISCs are restricted to fold bases or 
“intervillus pockets” during the first weeks of the postembryonic period, 
in a similar manner as for Lgr5+-ISC patterning in newborn mice. 
Migration of cell progenies along folds, apoptosis at the villus tip and 
multiplication of secretory cells at the folded base occur starting from 
the third postembryonic week [57–60]. This arrangement is maintained 
through adult. 

life in zebrafish, where “flat clusters” function as ISC niches [61]. In 
the adult Drosophila midgut, although the intestinal tissue remains flat 
and does not display any particular architecture, tissue compartmen
talization also takes place. However, like mammalian ISCs [62], [63], fly 
ISCs are found in diverse midgut regions, where their number and gene 

expression signature vary, suggesting that their heterogeneity may 
sustain specific functionalization of tissue domains [64]. In addition, 
equivalent of TA cells or Paneth niche cells has not been yet reported in 
Drosophila [65,66]. 

3. Cell division mechanism and specificities in the intestinal 
tissue 

Epithelia exhibit extensive cell divisions, needed for constant tissue 
renewal. Since epithelia provide critical barrier functions required for 
the compartmentalization of multicellular organisms, cell division must 
occur in a manner that preserves epithelial integrity. Mitotic cells must 
thus orient their division plane along the appropriate axis of the tissue 
while maintaining tight cell-cell junctions with their neighbors. When 
unchecked, spindle mis-positioning may impair the functional structure 
of a tissue and lead to various pathologies, including cancer. Such de
regulations in division positioning may expose epithelial cells to non- 
conformal environments and cause dysplasia, hyperplasia, epithelial to 
mesenchymal transition, metastasis, or the emergence of cancer stem 
cell populations in stem cell niches [67–72]. In addition, in multiple 
tissues the orientation of cell divisions can influence fate lineage as well 
as the positioning of daughter cells along the tissue, ensuring a proper 
spatial distribution and balance of different cell types and giving rise to 
the functional structure of a tissue [73]. 

During cell division, the DNA material needs to be properly segre
gated between the two daughter cells to avoid the emergence of aneu
ploidy. This process is controlled by the mitotic spindle, a bipolar 
structure made of microtubules (MTs) and motors, with centrosomes 
located at spindle poles that nucleate and organize MTs. Spindles feature 
different populations of MTs, some that attach chromosomes through 
kinetochores, and astral MTs that radiate from spindle poles towards the 
cell cortex, and exert forces and torques that position and orient the 
spindle [67,74,75] (Fig. 2). In many cells, the distribution of MT forces 
depends on the spatial regulation of MT (-)-end directed dynein motors, 
which pull MTs. This spatial activity may be dictated by multiple cues 
including intrinsic polarity and environmental signals [67,69,76–78]. 
Therefore, how a mitotic spindle will be oriented in tissues may be 
influenced by diverse factors, including cell geometry [79], cell adhe
sion patterns [80], internal polarity cues [81], as well as external forces 
from the surrounding tissue [82,83]. 

Genetic studies in model organisms such as Drosophila and C. elegans 
first identified cell polarity regulators as key components in the mo
lecular regulation of spindle orientation [84]. Pins (Partner of Inscute
able), the homolog of mammalian LGN (Leucine-Glycine-Asparagine), 
and Gαi subunits were for instance characterized in the control of 
spindle orientation in Drosophila embryonic neuroblasts [85–87]. In 

Fig. 2. Scheme depicting the process of cell division at the bottom crypt in the 
intestinal tissue. 
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most animal cells, this complex is localized at the cell cortex and in
teracts with NuMA (Nuclear and Mitotic Apparatus), which is released 
from the nucleus upon nuclear envelope breakdown at the onset of 
mitosis. NuMA recruits dynein to the cortex which binds and pulls astral 
MTs to orient the mitotic spindle and cell division [88,89]. Conse
quently, the localization of the LGN complex at a specific subcortical 
domain often dictates the site of force concentration that will act on 
astral MTs to orient the mitotic spindle and determine the division axis 
[90]. For instance, in many monolayered epithelia LGN and NuMA are 
recruited along the tissue plane at the level of apical cell junctions 
ensuring that the spindle lies in the plane of the tissue to safeguard tissue 
architecture [67]. 

3.1. Cellular remodeling during division 

During intestinal development, between E10.5 and E14.5, inter
kinetic nuclear migration (INM) takes place, and nuclei are alternating 
in the epithelial layer. However, two distinct pools of dividing cells can 
be considered according to their shape in the pseudostratified epithe
lium: elongated cells that participate in the expansion of the epithelial 
layer, and rounded cells that participate in the invagination of the apical 
surface and initial stages of villus formation [14]. 

In the adult intestine, epithelial cells are tall columnar cells with a 
high aspect ratio and their nuclei sit basally during interphase. When 
cell division is initiated, in prophase, the DNA condenses, and the nu
cleus is pushed towards the apical side through an INM process [91–94] 
(Fig. 2). Concomitantly, the cell undergoes shape changes into a more 
rounded cell shape positioned towards the apical side of the monolayer. 
Throughout the rest of the division phases, the apical side of the mitotic 
cell stays intact, aligned with the rest of the monolayer but the basal 
membrane is remodeled and the cell stays in contact with the basement 
membrane through an extension of the membrane filled with actin ca
bles that is referred to as the “basal foot” or “filopodial pathfinding” [10, 
38,95] (Fig. 2). The basal process would be essential for daughter cells to 
move back to the basal side of the monolayer, and reintegrate the tissue 
at the end of cytokinesis [38,95]. 

Although diverse cytoskeletal networks have been reported as key to 
the INM process, their exact function remains controversial. In fact, MTs 
and actomyosin networks may constitute the main force generators 
described so far [95,96]. By analyzing the ventricular zone of the 
developing mouse central nervous system, Shenk and colleagues pio
neered this field of research [97]. They demonstrated that myosin-II 
activity was required for force generation during the INM process, as 
blebbistatin treatment abolished apical DNA migration in progenitors 
[97]. In addition, Meyer et al. showed that the basal process is enriched 
in actin which is required for apical migration of the DNA in Drosophila 
imaginal discs [96]. Yet so far, the basal process does not exhibit any 
contractile property, as activated myosin is only located at the mitotic 
cortex for cell rounding and DNA migration [96]. Similar observations 
were made in the intestinal crypt [95]. On the other side, MTs are not 
enriched in the mitotic basal process of Drosophila imaginal discs [96]. 
However, Näthke and colleagues proposed a significant contribution of 
the MT cytoskeleton during intestinal INM, based on immunofluores
cence analyses of fixed samples [95]. 

3.2. Orientation of cell division in the crypt 

Once INM is complete, spindles form and mitosis proceeds. Centro
somes are located apically in interphase cells and become aligned 
laterally with condensed chromosomes during prometaphase (Fig. 2). 
The angle of the mitotic spindle relative to the apical surface of the 
monolayer can greatly vary before stabilizing at metaphase [98]. As in 
most of the epithelial tissues, the spindles in the mammalian intestine 
have been shown to display a planar orientation [93,98] but, to date, 
how polarity complexes, MTs and force generators may be distributed in 
dividing intestinal cells to control planar spindle orientation remains 

poorly addressed. In a recent preprint, 3D imaging of dividing cells in 
the crypt suggests that polarity effectors including NuMA, LGN and 
Afadin, may be segregated to the basal poles of mitotic cells away and 
orthogonal to mitotic spindles [99]. This unconventional localization 
sharply contrasts with the stereotypical recruitment of these effectors at 
the level of apical junctionsin other model epithelia. Using mathemat
ical models and high-resolution expansion microscopy, the authors 
suggest that mitotic astral MTs may be limited by Kif18b, a depolyme
rizing kinesin which allow spindles to probe local apical cellular ge
ometries to orient the spindle in the tissue plane. 

However, the orientation of ISC division per se remain controversial. 
Pioneering studies by Fleming et al. demonstrated that ISCs divide 
symmetrically [98]. Similar data were further reported in the subse
quent literature [34,93]. Particularly, 3D imaging of the entire crypt 
compartment allowed to demonstrate that 100% of dividing cells orient 
horizontally in the tissue plane [93]. In this context, planar cell polarity 
might be a good candidate for spindle orientation, as loss of planar cell 
polarity components in other systems disrupt spindle orientation 
[100–102]. In sharp contrast, Quyn et al. showed that a spatial regula
tion of cell division orientation occurs in the crypts: dividing cells orient 
orthogonal to the epithelium plane in the stem cell compartment but in a 
planar manner in the TA area [70]. More recently, Sei and colleagues 
reported that ISCs would preferentially follow an orthogonal cell divi
sion by computational modeling as well as following ISC mitosis in vivo 
[103]. Changes in spindle orientation along the normal crypt axis might 
contribute to the maintenance of a constant number of ISCs in the niche 
[70,103]. The distribution of symmetric or asymmetric spindle orien
tation may rely on the opposite Wnt and Apc gradients [104,105]. 
Moreover, a delay in the transition between symmetric and asymmetric 
divisions is observed following a mutation in Apc in the crypt 
[105–107]. 

It is important to mention at this stage that a great deal of confusion 
has arisen in this field of research, and, commonly, the terms symmetry/ 
asymmetry are used to designate either the orientation of cell division or 
the cell fate progeny. In fly, asymmetry in the division plane is directly 
linked to cell fate asymmetry. Indeed, 70–90% of ISCs generate asym
metric division and will generate asymmetric progeny, i.e. one new ISC 
and one enteroblast which will ultimately differentiate into enterocyte 
or enteroendocrine cell [65,66]. Symmetric ISC division occurs during 
ISC duplication in this model [108,109]. Whether the orientation of ISC 
division is also directly related to cell fate decisions in mammals remains 
to be investigated and deserves careful examination with optimal 
spatio-temporal resolution. 

3.3. Daughter cell re-integration 

The correct positioning of daughter cells after division within the 
epithelial layer is important to determine the architecture of the tissue 
[110–112]. At the end of mitosis, the cleavage furrow extends toward 
the apical surface and progressively separates the nascent daughter cells 
[98] (Fig. 2). In intestinal crypts, cytokinesis is tightly controlled. For 
instance, Cdc42 regulates Rab8a vesicle trafficking during cytokinesis 
[113], and Cdc42 depletion in mice provokes defective cytokinesis, 
decreased clonal expansion of Lgr5+-ISCs, crypt enlargement and ulti
mately hyperplasia [113–115]. Moreover, Zhang et al. revealed that a 
conditional Cdc42-KO leads to a reduction of ISCs and an increase of TA 
cells. They concluded that Cdc42 may be at the center of Hippo/YAP 
signaling for the control of cell fate balance between ISCs and TA cells 
[115]. 

After cytokinesis, both daughter cells slowly migrate basally until 
their nuclei align with adjacent interphase cells, and assume a columnar 
shape (Fig. 2) [38]. Whereas apical migration has been suggested to be 
an active process, basal re-integration after cytokinesis may involve 
more passive processes [95]. 

During development, between E10.5 and E14.5 in the pseudos
tratified epithelium, two modes of daughter cell re-integration have 
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been reported [10]. In the first scenario, the daughter cell that possesses 
a basal process re-integrates twice faster than the other one by taking 
advantage of this pre-existing contact with the basal surface. The 
remaining daughter cell has to project between neighboring cells in a 
“pathfinding” manner. In the second scenario, both daughter cells use 
the pathfinding mode and thus delay their re-integration in the epithe
lial monolayer by intercalating between neighboring cells [10]. At this 
developmental stage, Wnt5a is instrumental for filopodial pathfinding 
mode during daughter cell re-integration. In the absence of Wnt5a 
expression in the mesenchyme, daughter cells fail to extend filopodial 
extrusion, remain at the apical surface and some die through apoptosis 
[10]. 

In adults, daughter cell repositioning displays a strong asymmetric 
behavior, as only one daughter cell exhibits a basal process. Interest
ingly, this phenomenon is accompanied by an anisotropic displacement 
of cells in the plane of the epithelial monolayer along the crypt axis [93]. 
Moreover, it has been observed that some sister cells remain neighbors, 
while other sisters separate and reintegrate into the tissue apart from 
each other. This latter process is called interspersion and would promote 
the ISC exit from the niche toward the TA zone and their subsequent 
differentiation [38,95]. Interestingly, it was suggested that sister ISC 
separation is more efficient when an ISC divides on top of stiff and 
strongly adherent substrates [116,117]. In general, the functional sig
nificance of the heterogeneity of daughter cell re-integration is still 
missing. It will be interesting to determine in the future whether the 
mode and geometry of daughter cell intercalation in the epithelial 
monolayer influence their fate and behavior. 

3.4. Symmetry and asymmetry of cell fate 

With respect to cell fate and to sustain tissue renewal in a balanced 
manner, ISCs can divide symmetrically to generate two new ISCs or two 
TA cells, or asymmetrically with the formation of one ISC and one TA 
[56]. The initial dogma arose from genetic models in vivo and mathe
matic modeling. The choice between the two scenarios helps preserve 
ISC and progeny pools, and is crucial for tissue homeostasis. However, 
lineage tracing studies proposed that cell division would follow a sto
chastic pattern described as “neutral drift” dynamics, in which 
Lrg5 + divisions are predominantly symmetric and compete for space 
within the niche [34,118]. Thus, ISC asymmetry in terms of fate would 
be established at the level of the entire pool of ISC as they lose contact 
with neighboring Paneth cells [34,118]. Recently, a counter-proposal 
has favored instead an asymmetric cell division-dominant neutral drift 
model, which was also validated in vivo [103]. Nevertheless, the mode 
of ISC divisions would be temporally regulated, as in newborns sym
metric modes of division occur whereas asymmetric divisions would 
sustain crypt growth and differentiated lineage implementation in adult 
mice [119]. More recently, a study that combined tracking of single cells 
after time-lapse microscopy of mouse intestinal organoids and compu
tational modeling, demonstrated that a vast majority of dividing cells 
divide symmetrically in terms of cell progeny. This mechanism would 
allow to maintain a constant number of cells under proliferation in the 
crypt compartment [120]. 

Despite accumulating knowledge, our understanding of the regula
tion of intestinal cell fate is very limited, particularly with regard to the 
mechanisms that take place during cell division and that determine the 
symmetry or asymmetry of ISC fate. In particular, the orientation of the 
mitotic spindle relative to intrinsic polarity cues, as observed in neuro
blasts, remains a hypothesis of choice to coordinate the spatial segre
gation of cellular determinants with the physical division of the two 
daughter cells. The control of spindle orientation has been suggested to 
be one of the principal factors in the specification of symmetric versus 
asymmetric intestinal cell division [121]. Importantly, cell fate asym
metry is not necessarily linked to an asymmetry in the size or shape of 
daughter cells. Bellis et al., demonstrated that some planar (symmetric) 
ISC divisions display asymmetric mNumb segregation and subsequent 

daughter cell asymmetry with respect to cell fate [93]. Other asym
metric events during mitosis have also been proposed as determinants of 
asymmetric cell fate. As an example, the anisotropy of daughter cell 
movement would trigger asymmetry in terms of fate [93]. 

In other tissue models, additional mitotic events are associated with 
the spindle itself, such as the inheritance of the mother or daughter 
centrosome, and that of the "mid-body" in one of the two daughter cells 
[122–124]. Others concern the asymmetric segregation of adhesion 
factors or of cytoplasmic constituents associated with degradation pro
cesses, such as lysosomes, mitophagosomes or autophagosomes [125]. 
As an example, Katajisto et al., demonstrated that newly synthetized 
mitochondria preferentially segregate in ISC daughter cells that retain 
their stemness [126]. Finally, asymmetries may also occur at the level of 
genome or epigenome segregation. In some cases, preferential inheri
tance of the old DNA strand by the stem cell has been observed [127]. 
Similarly, asymmetric segregation of new and old histone proteins has 
been described and shown to be driven by mitotic histone modifications 
[128,129]. 

Even if an asymmetric division is likely the triggering event for a 
change in cell fate, very often other aspects of post-mitotic maturation 
allow the complete differentiation of one of the two daughter cells. 
Central to intestinal homeostasis, different cell types surrounding the 
niche maintain the activity and the fate of ISCs by producing signaling 
factors. In particular, canonical factors like Wnt, Notch and Noggin, 
secreted by the neighboring Paneth cells, maintain the self-renewal of 
Lgr5+-ISCs within the niche. In addition, the ISC fate is also controlled 
by the overall architecture of the tissue and by cell-to-cell contacts, 
which can exert physical signals that control ISC division. Over the last 
ten years, accumulating experimental evidence has led to the conclusion 
that mechanical tissue properties have the power of directing a variety 
of cell functions including cell proliferation and differentiation [130]. 
Cells interact with their environment through cell-substrate and cell-cell 
adhesions, and sense the mechanical status of the matrix and neigh
boring cells. Through mechano-transduction processes, cells can thus 
adapt in response to the physical properties of the tissue and modulate 
their organization and homeostasis [131,132]. For example, matrix ri
gidity regulates ISC proliferation, organoid expansion and intestinal 
differentiation [133]. To date, only few studies concentrated on the ISC 
niche by itself. Nevertheless, it is known that the rigidity of the extra
cellular matrix and the activity of myofibroblasts are important for ISC 
homeostasis and that their alteration is found in certain pathologies such 
as fibrosis or cancer development [134–138]. 

In fly, ISC fate asymmetry would be accomplished by an integrin- 
dependent cell-basal membrane interaction that provokes the redistri
bution of apical polarity complex Par in the apically positioned daughter 
cell [139]. More recently, Bardin and colleagues showed that Numb 
distribution during cell division conditions the cell fate choice in EE cells 
in Drosophila [140]. In addition, a direct role of cell division orientation 
in fly ISC fate has been provided by Hu et al. [141]. The authors showed 
that in young flies, a balance between asymmetric and symmetric cell 
division with respect to fate takes place to modulate organ size. This 
switch in cell fate is ensured by a change in the cell division mode, from 
oblique to planar, respectively. At the molecular level, this change is 
triggered by the phosphorylation of Jun-N-terminal kinase (JNK) and its 
consecutive binding to Wrd62 at the spindle pole, the repression of Kif1a 
expression and loss of cortical Mud, the homologue of NuMA [141]. 

Note that all the aforementioned diverse hypotheses, which are not 
mutually exclusive, have been put forward and tested in different 
invertebrate models in majority, or in isolated mammalian stem cell 
culture systems without a niche. However, to date, they remain un
studied in the mammalian intestinal tissue. 

4. Regulation of cell division rate in the intestinal tissue 

Diverse physiological situations modulate the rate of cell division, in 
addition to canonical cell cycle regulators such as cyclin-dependent 
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kinase (CDKs), CDK inhibitors (CKIs) and transcription factors. 

4.1. Development and aging 

Proliferation rates are exacerbated during development. By using 
theoretical models and single-molecule FISH experiments, Itzkovitz 
et al. demonstrated that over-proliferation of ISCs occurs during crypt 
growth in the mouse intestine. On the other side, the ISC cycling time 
increases during adult life [119]. In addition, ISC division rate decreases 
with aging in human and mouse small intestine due to reduced Wnt 
signaling [142–146]. Such a decrease in the proliferative capacity of 
intestinal tissues has serious consequences for tissue repair following 
stress in elderly individuals. Interestingly, a recent study showed that 
the defective potential of aging crypts can be modulated by down
regulating Cdc42 activity and thereby recovering the regenerating po
tential of ISCs, opening new perspectives for the repair of the aging 
intestinal epithelium [144]. In flies, it has been shown that aging is 
accompanied by a disturbance in mitochondrial metabolism and an 
elevation in oxidative stress, causing ISC over-proliferation and an 
impairment of differentiation. This phenomenon often leads to intestinal 
dysplasia in old specimens [147–149]. 

4.2. Microenvironment 

The microenvironment modulates the regenerative response by 
influencing the activity of various signaling pathways, including Wnt, 
Notch, EGFR/MAPK, Apc, EpbB, BMP, Hippo or Activin A among others 
[150–153]. Wnt signaling would not be required during the first stage of 
intestinal development, before villus formation [154,155]. Under the 
depletion of beta-catenin or Lrp5–6 (Frizzled co-receptors), no impact 
on the proliferation of embryonic progenitors was observed in the 
pseudostratified epithelium. Effects of Wnt signaling would only occur 
later during villification (E15.5) [156]. In adult physiological situations, 
titration of the Wnt signaling cascade constitutes a key pathway that 
regulates ISC proliferation and differentiation [6,35,157,158]. Apc and 
Wnt signaling components (e.g., survivin) are required for mitosis. This 
molecular mechanism establishes a zone in the lower crypt where con
ditions are optimal for maximal cell division rates and mitotic spindle 
orientation [105,159]. 

Intestinal proliferation is not only controlled by cellular components, 
but also in response to mechanical inputs such as stretch or compression 
as reviewed recently [160]. Moreover, under stress or damage provoked 
by treatments with genotoxins or pathogens, there is an increase of ISC 
division in flies [161,162]. 

More surprisingly, cell division would be subject to a regulation by 
the circadian rhythm. Habits such as bedtime/ getting up at regular 
times or light limitation at night would be critical to keeping the ho
meostasis of the circadian rhythm and therefore a proper intestinal 
function [163]. Interestingly, fluctuations in cell proliferation during the 
day have been reported in mice [164]. In addition, in the zebrafish in
testine, M phase may be light-sensitive and under the control of the 
circadian clock, through molecular modulations of p21, PCNA and 
Cdck2 gene expression [165]. This mode of cell division regulation may 
probably be indirect and related to the consequences per se of the 
circadian rhythm such as hormone levels or variations in body tem
perature [163]. Modulation of cell division by the circadian rhythm 
would be crucial for gut physiology [166,167], as evidenced as an 
example by Bishehsari and colleagues [168]. Finally, disruption of the 
circadian rhythm worsens the inflammatory response and polyp devel
opment in predisposed mice mutated for Apc [168]. 

4.3. Radiotherapy 

Ionizing radiation is commonly used in the treatment of various 
cancers. However, this therapy has side effects such as diarrhea or in
testinal failure. This radiosensitivity may emerge from a strong decrease 

in the number of active proliferating ISCs after treatment [169,170]. 
This is largely due to the fact that ISCs cannot activate DNA repair 
pathways and therefore undergo p53-dependent apoptosis [171,172]. 
However, + 4 quiescent ISCs are not affected by ionizing radiation and 
are thus radioresistant [173,174]. + 4 quiescent ISCs become mitoti
cally active upon exposure to radiations but fail to replenish the intes
tinal epithelium in the long run. However, the overexpression of 
TP53-induced glycolysis and apoptosis regulator (TIGAR) has been 
recently reported to boost + 4 quiescent ISC proliferation after irradia
tion treatment [175]. 

4.4. Nutrition and metabolism 

Although the concept is appealing, molecular mechanisms by which 
nutrients may influence gut homeostasis are not yet fully demonstrated. 
So far, a dietary control of the intestinal niche through nutrient avail
ability and modulation of metabolic pathways, has been proposed in the 
literature with direct repercussions on ISC proliferation rates, fates and 
modes of division [176,177]. Starvation leads to the expansion of the 
ISC population in zebrafish and flies [141,165]. Besides, the fasting of 
mice during 24 h increases ISC renewal and provokes crypt expansion, 
at the expense of cell differentiation [176,178]. Similarly, the intestinal 
tissue of patients under parenteral nutrition (and therefore, under food 
uptake restriction) displays villus atrophy and a decrease in the mitotic 
index but the number of crypts remains constant [179]. In fact, caloric 
restriction regulates mitochondrial metabolism, thus delaying the ef
fects of aging and protecting against many diseases [148,180]. Fasting 
would thus be a way to boost ISC biology and tissue regeneration in aged 
or injured individuals [176,181]. The mTOR (mechanistic Target Of 
Rapamycin) pathway is at the core of a nutrient-sensing mechanism. 
Indeed, food uptake limitation and consequently calorie restriction leads 
to mTOR complex-1 (mTORC1) signaling downregulation in Paneth 
cells to favor Lgr5+-ISC stemness [44,178]. 

On the other hand, over-nutrition which leads to obesity and pre- 
diabetes, engenders ISC hyperproliferation and accelerated differentia
tion in mice [182]. As an example, high fat diet causes global morpho
logical changes in the crypt-villus axis. Indeed, fatty acids stimulate cell 
proliferation, threatening intestinal regeneration and increasing the risk 
of hyperplasia and tumor formation in mice [183,184]. From a mech
anistic point of view, this would involve the transcription factor 
PPAR-delta (Peroxisome Proliferator-Activated Receptor) which re
inforces the ISC stemness potential [183]. 

Interestingly, food intake in mice may modify the orientation of cell 
division by itself. When mice are fed ad libidum, a majority of divisions 
are planar but when fasting, divisions become mainly orthogonal to the 
tissue surface [185]. In addition, glucose supplementation in intestinal 
organoids switches the cell division orientation towards symme
tric/planar [185]. Moreover, a direct link between starvation and in
crease of JNK signaling, loss of Mud cortical recruitment, abolishment of 
astral MT-based spindle orientation and planar cell division has been 
reported in flies [141]. 

5. Impact of cell division on the intestinal tissue 

Cell division impacts tissue organization during developmental or 
pathological processes. Any fluctuation in the orientation or rate of cell 
division has large-scale repercussions on tissue homeostasis. We 
describe here few examples for the intestinal tissue. 

5.1. Crypt dynamics 

Crypt fission is a normal developmental event that is required for 
intestinal expansion during embryogenesis and childhood in humans, 
and postnatal maturation before weaning in mice [186–188], [189]. 
Low rate of crypt fission takes place during adulthood under physio
logical conditions [189]. When the intestinal epithelium is damaged, for 
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instance in case of inflammatory bowel disease [190] or after irradiation 
[191], the rate of this morphogenetic event dramatically increases upon 
regeneration to generate new crypts. This phenomenon is driven by a 
slow and continuous process that is composed of three distinct phases 
and called the “crypt cycle” [192]. First, during the “development 
phase”, the crypt grows in size up to a threshold equivalent to twice the 
initial ISC pool. At this point, a tissue bud develops at the crypt bottom 
crypt and triggers a “bifurcation phase”. This bifurcation process will go 
up along the crypt until a total fission gives rise to two identical crypts. 
Any disruption during this crypt cycle spawns so-called “corrupted 
crypts” which participate in the development of adenomas and adeno
carcinomas in the small intestine and colon [193–196]. Those aberrantly 
shaped crypts would be the result of the hyperproliferation of mutated 
cells, which causes a truncated crypt cycle, resulting in mostly asym
metric or incomplete fission. Among the mutations involved, KRas, TP53 
and Apc are associated with adenocarcinoma development in 45%, 54% 
and 85% of cases [197]. 

The link between abnormal cryptogenesis and tumor initiation is 
best described in the context of mutations in the tumor-suppressor gene 
Apc. Heterozygous mutations in humans (Familial adenomatous polyp
osis (FAP) patients) or Apc+/- mice, lead to a loss of proper crypt orga
nization and a dramatic over-proliferation of niche cell populations that 
progress towards the top of the crypt [106]. In addition, the Apc mu
tation also impacts the orientation of mitotic spindles by regulating the 
(+)-end dynamics of MTs [122]. In the case of a heterozygous mutation 
of Apc (in humans and mice), the preferential mode of planar division 
orientation is lost and could be at the origin of changes in cell shape and 
consequently in the structure of the crypt [70,93]. Along this line, 
Boman and Fields [105] have proposed a Apc:Wnt counter-gradient 
which would explain the dual effect of Apc mutations. According to 
their study, the default in spindle orientation following the loss of Apc 
leads to the expansion of cells along the crypt, resulting in a net increase 
in cell proliferation. As tissue budding is no longer confined to the 
bottom of the crypt, asymmetrical crypt fission prevails [195,196] with 
the generation of corrupted crypts and micro-adenomas, i.e. precursors 
of adenomas, that can degenerate into adenocarcinomas [107,194,195]. 

5.2. Microenvironment 

Over the last decade, accumulating experimental evidence has led to 
the conclusion that mechanical tissue properties have the power of 
directing a variety of cell functions including cell proliferation and dif
ferentiation [130]. Cells interact with their environment through 
cell-substrate and cell-cell adhesions, and sense the mechanical status of 
the matrix and neighboring cells. Using mechano-transduction path
ways, cells can thus adapt in response to the physical properties of the 
tissue and modulate their organization and homeostasis [131,132]. As 
an example, Farge and colleagues elegantly demonstrated that colonic 
tumor physical properties directly impinge on healthy surrounding tis
sues. Their study stemmed from the initial observation of the existence 
of a mechanical pressure induced by hyper-proliferation in tumoral 
areas. By mimicking such mechanical pressure on healthy tissue by 
injecting magnetic nano-crystals and applying mechanical stresses, they 
caused a nuclear translocation of beta-catenin in yet non-tumoral areas, 
followed by the overexpression of beta-catenin target genes and 
tumor-related abnormalities in the colon tissue [198]. Moreover, matrix 
rigidity regulates stem cell proliferation, organoid expansion and in
testinal differentiation [133] and extracellular matrix stiffness and 
physical constraints applied to the niche compartment influence the ISC 
behavior [136,137]. In addition, physical properties are able to directly 
modulate the orientation of cell division in diverse tissues [83,133,199, 
200] but this assumption remains to be demonstrated in the intestinal 
tissue. 

Damages to the intestinal stem cell niche can result from mechanical 
stress, infections, chronic inflammation or cytotoxic therapies. Stem 
cells develop specific DNA damage responses [201], the underlying 

mechanisms of which are incompletely understood. Recent work by 
Romagnolo and colleagues showed that intestinal stem cells have an 
increased capacity to prevent the accumulation of genetic damage 
[202]. Unlike other proliferative intestinal cells, stem cells show very 
few DNA double-strand breaks following irradiation. However, this 
resistance to DNA damage is abolished when autophagy is inhibited 
[202]. In addition, mesenchymal cells and immune cells become more 
abundant and secrete signaling molecules that promote the regenerative 
process [48]. This regeneration process is influenced by the nutritional 
state 185, the microbiome [203], [204], GLI1-expressing mesenchymal 
cells and Wnt signaling [205–207], the extracellular matrix [50,208] 
and the enteric nervous system 7. During injury, a single clone of ISC is 
sufficient to induce crypt regeneration [209]. However, if the injury has 
destroyed some crypts, the few surviving crypt stem cells can divide to 
increase their numbers, and subsequently restore sufficient numbers of 
crypts by crypt fission, to maintain epithelial homeostasis [209]. 

5.3. Tumor development 

Rapid cell proliferation constitutes one characteristic feature of 
cancer development but dysregulation of cell division is also directly 
associated with oncogenic transformation and expansion of cancer stem 
cells [210,211] (Fig. 3). In Drosophila, centrosome amplification or 
kinetochore disruption causes chromosome mis-segregation, aneuploidy 
and ultimately the accumulation of ISCs, leading to an intestinal dys
plasic phenotype [212,213]. In the same model, spindle orientation 
disruption by abolishment of integrin-dependent signaling or direct 
perturbations of spindle positioning leads to an over-proliferative 
phenotype [139]. Furthermore, regulators of cell division orientation 
are often proposed to participate in tumor progression. For example, the 
mutation of Pins (LGN) in Drosophila causes tumor-like phenotypes in 
neuroblasts [214]. 

Although a direct link between division mis-orientation and intesti
nal tumorigenesis has been well described in invertebrates, a precise 
demonstration of such effect in mammals is still lacking [215]. Muta
tions accumulate during stem cell division during aging, and this in
creases the risk of cancer [145,216]. Along this line, Apc mutations 
constitute a first hit of colorectal cancer initiation [217]. Loss of Apc in 
Lgr5 + ISCs leads to rapid adenoma formation within 3–4 weeks, 
whereas no microadenomas are observed when Apc deletion is induced 
in non-stem cells such as TA cells, with only the formation of 
non-progressing adenomatous crypts. Thus, Apc depletion in ISC drives 
intestinal neoplasia [218]. On the other hand, Näthke and colleagues 
showed that the ApcMin mutation in mouse or human adenoma leads to 
randomly oriented cell division of both ISCs and TA cells and defective 
basal foot formation, provoking changes in crypt architecture and crypt 
base enlargement [70,95]. By contrast, Bellis et al., showed that both 
daughter cells grow a basal process in ApcMin/+ mice. As a result, 
directed movement of cells within the crypt is abolished in the mutant 
tissue [93]. However, it remains difficult to distinguish between the role 
of Apc in modulating signaling pathways and cell proliferation on the 
one hand, from its role in the orientation of divisions for tumor initiation 
on the other hand. 

6. Conclusion 

The intestinal tissue is one of the most proliferative in the body and 
is, therefore, one of the most exposed to the development of tumori
genesis and other diseases. To date, however, the current literature that 
documents how the division process is regulated in intestinal crypt tis
sues, remains sparse, with many fundamental aspects that remain 
unanswered or controversial. Contrasting findings may be related to 
experimental details, e.g., nutrient availability, harsh environment, 
micro-injuries or aging both in mice and flies [77], [48] or from the 
frequent confusion between cell fate symmetry and geometries of cell 
divisions. 
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The popularization of intestinal organoid cultures and biomimetic 
micro-engineered devices will now make it possible to overcome vari
abilities in environmental factors as well as to gain in spatio-temporal 
resolution within crypt domains [25,160,219–222]. This approach will 
certainly foster fundamental knowledge of how cell division processes 
are regulated and how they promote the organization and function of 
the intestinal tissue [25,38,73,223]. 
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