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Cells under pressure: how yeast cells respond
to mechanical forces
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In their natural habitat, unicellular fungi
are exposed to a myriad of physical
forces, including compressive, tensile,
and shear forces.

Fungi are protected from mechanical
stress by a rigid cell wall. During polarized
growth, turgor-derived intrinsic forces
press outward to deform weaker cell
wall regions.

When yeast cells encounter an external
force or rigid surface, the polarized
growth machinery is destabilized and
reorganized away from the obstacle.
Fungal pathogens exploit this mecha-
nism to invade host tissues through
In their natural habitats, unicellular fungal microbes are exposed to a myriad of
mechanical cues such as shear forces from fluid flow, osmotic changes, and
contact forces arising from microbial expansion in confined niches. While the
rigidity of the cell wall is critical to withstand such external forces and balance
high internal turgor pressure, it poses mechanical challenges during physiologi-
cal processes such as cell growth, division, and mating that require cell wall
remodeling. Thus, even organisms as simple as yeast have evolved complex sig-
naling networks to sense and respond to intrinsic and extrinsic mechanical
forces. In this review, we summarize the type and origin of mechanical forces
experienced by unicellular yeast and discuss how these forces reorganize cell
polarity and how pathogenic fungi exploit polarized assemblies to track weak
spots in host tissues for successful penetration. We then describe mechanisms
of force-sensing by conserved sets of mechanosensors. Finally, we elaborate
downstream mechanotransduction mechanisms that orchestrate appropriate
cellular responses, leading to improved mechanical fitness.
weaker regions and turgor-derived
forces for penetration.

Yeast cells usemultiplemechanosensors
with nano-spring-like extracellular do-
mains, stretch-activated calcium chan-
nels, and specific membrane structures
to convert external mechanical forces
into intracellular biochemical signals.

MAP kinase and calcium signaling path-
ways conserved across unicellular fungi
and higher eukaryotes are crucial to
orchestrate cellular mechano-stress.
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Introduction
Organisms as simple as microbes or as complex as mammals are continually exposed to a
myriad of biochemical or physical signals originating from within the cell or the environment. To
orchestrate appropriate cellular responses they have evolved specific receptors to sense different
signals and transduce the information through an interlinked signaling network to effector
proteins. While biochemical signaling has long been investigated, the wide-spread importance
of mechanical forces in cell biology has only recently been appreciated. Indeed, the cellular re-
sponse to physical stimuli in a microenvironment underlies physiological processes from develop-
ment to pathology in multicellular organisms. Physical cues determine cell shape, functions, and
motility, and drive developmental programs such as embryogenesis. When perturbed, aberrant
mechanical feedback mechanisms have been linked to several pathological conditions, including
muscular dystrophy, hearing disorder, polycystic kidney disease, and cancer progression
(reviewed in [1]).

Unlike mammalian cells, many microbes and plant cells have a stiff cell wall, in addition to the
plasmamembrane, to opposes physical forces. The cell wall is thought to protect cells by bearing
mechanical stresses derived from internal turgor pressure that pushes the plasma membrane
outwards and by passively absorbing many external physical forces, including shear, tensile,
and compressive forces (Box 1). During physiological processes, such as polarized growth, dy-
namic adaptation of the rigid cell wall requires carefully orchestrated spatiotemporal remodeling.
Thus, even unicellular organisms protected by a cell wall require dedicated mechanoresponsive
mechanisms to balance internal and external forces and prevent lysis. Genetically amenable mi-
crobes can therefore serve as valuable model systems to investigate fundamental principles of
mechanotransduction. Indeed, recent discoveries in the yeasts Saccharomyces cerevisiae and
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Box 1. Understanding forces at the surface of yeast and fungal cells

Compressive stress

This is a force per unit area applied orthogonal to the cell wall. It will cause cells to flatten, and cell walls to thin, as well as
become tense along certain axes of the surface plane. This stress may be caused by an external object that moves onto
cells (a rock, or a PDMS roof), or more naturally as cells grow onto rigid obstacles, so that the stress originates from internal
turgor pressure as well as from neighboring cells.

Tensile stress

This stress is most commonly associated with turgor pressure that pushes outward against the cell wall. It puts the wall
under lateral tension andmay also cause the wall to thin locally or globally. Expansion of a substratum on which yeast/fungi
adhere could also create tensional stress by stretching cells.

Shear stress

This stress may be caused by fluid flows on the surface of cells that apply a force on the surface parallel to the flow. Since
the cell is adhered to the substratum, its cell wall is sheared. This stress will be essentially proportional to the viscosity of the
fluid and the fluid flow speed at the cell surface divided by the cell height. Solid shear stress may also arise in colonies from
cells sticking onto each other and expanding or rearranging at varying rates in different parts of the colony.

Hooke’s law

The simplest form of Hooke’s law describes the linear relationship between force, F, and deformation, ΔL, for a linear elas-
tic spring of stiffness k: F = k ΔL. For an elastic material of more complex geometry it is generalized as σ = Yε, with σ the
stress (force per unit surface), ε the elastic strain which is a normalized measurement of material deformation, and Y the
Young’s modulus of the material. Young’s modulus has the same units as pressure (Pa) and represents a stiffness per unit
area for the bulk of the elastic material. Stresses and strains depend on the geometry/thickness of the material and may
have different values along different axes. For example, for a tube-like cell, such as S. pombe, the stress and strains of
the cell wall will have different values along the long axis of the cell vs along the radial direction, vs across the cell surface.

Trends in Microbiology
Schizosaccharomyces pombe identified a family of mechanosensors – remarkably conserved
even among nonwalled mammalian cells – and revealed molecular insight into their downstream
signaling networks. Together, these findings help to explain how cells coordinate surface growth
and cell wall synthesis and how they balance internal and external forces in changing environ-
ments. The emerging mechanisms have implications to understand filamentous growth and
pathogen invasion, and they may reveal concepts relevant for multicellular organisms such as
plants and animals. Here, we describe the different forces experienced by fungal microbes in
their natural habitat. We then summarize howmechanosensitive feedback mechanisms crosstalk
with cell division and polarized growth and describe mechanical regulation in fungal pathogenic-
ity. Finally, we highlight the underlying mechanotransduction pathways and cellular stress
responses.

Mechanical forces in the natural habitat of unicellular fungi
In their natural habitat, unicellular fungi grow as clusters adhering to biotic surfaces (e.g., plant or
animal hosts) or abiotic surfaces (rocks, medical devices, etc.), thus forming a functional commu-
nity (Figure 1A). S. cerevisiae, the simplest fungi, can initiate biofilm formation when grown in low
glucose concentrations on a plastic surface or on semisolid agar [2]. Cells in such biofilms are
surrounded by a hydrogel formed by complex polymers and water, which is further confined by
physical boundaries, leading to growth-induced compression at contact points. Moreover, the
local geometry generates a complex network of contact forces among neighboring cells. Tensile
forces can arise if the substratum is stretched, for instance by heat-mediated contraction or ex-
pansion, leading to lateral cellular expansion and compression in the perpendicular direction. Fi-
nally, cells are often exposed to tangential forces called shear stress, generated by flow of water
or physiological fluids, including blood or urine, across the biofilm or invading pathogens. Thus,
cells need to appropriately respond to combined physical forces to grow and survive in complex
microenvironments.
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Figure 1. Origin of mechanical forces in unicellular fungi. (A) Mechanical forces in the natural habitat of unicellular fungi.
Mechanical forces experienced by cells can be grouped as compressive, shear, and tensile forces. The growth of fungal
biofilms in confined spaces, such as rocks, gives rise to compressive forces exerted at the boundary–cell interface and at
cell–cell contacts. The flow of fluids across a biofilm exposes cells to shear stress. Tensile forces can arise when a
substratum – such as body surfaces, rocks, and medical devices on which microbial biofilms grow – expand acutely.
(B) Generation of turgor pressure. Turgor is generated as an inward osmotic flow of water expands the cell volume,
generating outward forces against the plasma membrane. When cells are in a hypotonic solution, this influx causes
swelling of cells, ultimately leading to cell bursting (top right). However, the cell wall stiffness provides resistance, enabling
cells to better withstand outward turgor-derived stresses (top left). In an isotonic solution with no net influx of water, or a
hypertonic solution with water efflux from cells, internal pressure becomes equal to, or less than, the external water
potential, respectively. (C) Forces experienced by a cell that is undergoing isotropic growth include external mechanical
forces and internal turgor-derived forces. While external forces can act inward (e.g., compressive forces) or pull the cell out-
ward (tensile forces), turgor-derived forces act outward from the cell. Thus, net force, and the resultingmechanotransduction,
is a combination of turgor-derived forces and components of compressive, tensile, or shear forces acting on the cell.
(D) Turgor pressure drives anisotropic polarized growth in yeast. Degradation or weakening of the cell wall at the growth
site results in local net expansion of the membrane and cell wall.
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One well-studied source of external mechanical stress emerges from cell growth against
rigid obstacles, or from neighboring cells in a packed colony or biofilm. For instance,
when grown in microfabricated wells (Box 2) rod-shaped fission or filamentous yeast cells
can buckle under the force at their tips pushing against the chamber wall [3,4]. Colonies
of budding yeast cells grown to high density in deformable polydimethylsiloxane (PDMS)
bioreactors (Box 2) develop stresses of up to 0.7 ± 0.1 MPa, which corresponds to 7 atmo-
spheric pressures, similar to the pressure in a champagne bottle. Such physical forces
propagate within the colony, stretching cell contacts and creating large tensile stresses on
cell walls [5]. Similarly, forces resulting from a moving rigid boundary onto a cell, such as
a PDMS roof, flatten cells and expose lateral cell walls to tensile stresses [6]. Other physical
stress conditions in the natural habitats of fungi are associated with osmotic changes, for
example during drought or humidification of the environment. Osmotic forces cause cells
to shrink or stretch, thereby yielding large surface stress. Thus, fungal cells may be exposed
to external forces that cause dramatic changes in cell shape and large mechanical stress at
the cell surface.
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Box 2. Innovative technologies for studying yeast mechanobiology

Microfabrication using polydimethylsiloxane (PDMS) has revolutionized the study of yeast mechanobiology. PDMS is a
bioinert and transparent soft polymer that allows the building of devices that can be used for live-cell imaging. Moreover,
the stiffness of PDMS structures can be altered by combining elastomer and curing agent in different ratios, enabling a
variety of microfluidic strategies to study different aspects of yeast mechanobiology. In the last decade, numerous
PDMS-based microfluidic devices have been developed to directly apply pressure to yeast cells, confine them in desired
geometries, create obstacles that cells have to contour or penetrate, and study the downstream mechanotransduction
andmechanoresponses. In addition tomicrofluidic technologies, the AFM, laser, andmicropipettes have been used to apply
localized physical stress to the yeast cell surface. Some examples of innovative technologies by which extrinsic mechanical
forces can be applied to yeast cells to study different aspects of mechanobiology are summarized in Table I.

Table I. Examples of technologies used to trigger physical stress in yeast cells

Refs Technology Stress type Organism

[115] Optic fiber probe Compression S. cerevisiae

[116] AFM Nanoindentation of cell wall in hyphal or
spore forms

Aspergillus
nidulans

[3,117] Cylindrical PDMS microchambers Reactionary force from walls of the
chambers

S. pombe

[70,118] AFM Single molecular stretching S. cerevisiae

[104] Micropipette Plasma membrane tension S. cerevisiae

[53] Localized laser ablation Cell wall damage S. cerevisiae

[54] Nano-fabricated obstacles Contact forces C. albicans

[5,119] Microfluidic bioreactor Growth-induced compressive stress S. cerevisiae

[120] Integrated elastomeric micropillar
array

Protrusive forces in hyphal invasion Achlya bisexualis

[6,51] Microfluidic growth chambers with
compressing pillars

Compressive stress S. cerevisiae

[8,13,55] Microfabricated channels Confinement and contact forces S. pombe

[4] Cylindrical PDMS microchambers Contact forces C. albicans

Trends in Microbiology
The cell wall and turgor pressure protect yeast cells by opposing external
mechanical forces
To withstand external mechanical stress, fungi are equipped with two mechanical systems: a cell
wall and an inflated cytoplasm which features an unusually large pressure called turgor [7]. The
plasma membrane of a turgid cell is protected much like an inflated inner air tube of a bicycle
tire, with the cell wall analogous to the elastic outer rubber tire limiting deformation in response
to extrinsic compressive, tensile, or shear forces.

The fungal cell wall is a stiff elastic multilayered thin shell encasing the plasma membrane. Its
thickness typically varies between 50 and 500 nm, and its bulk elastic modulus – Young’s
modulus – is equivalent to that of rubber, ranging from 10 to 100 MPa [8,9]. The strength and
elasticity of the cell wall is associated with the presence of glucan chains and chitin, linked by
hydrogen bonds (reviewed in [10–12]). This glucan layer is connected to an outer layer of
mannoproteins, which promote cell–cell recognition and sense diverse extracellular signals. Syn-
thesis of cell wall polysaccharides and glycoproteins occurs in the Golgi where the products ac-
cumulate in the lumen before being transported to the cell surface on secretory vesicles. Cell walls
exhibit large variations in composition and architecture among species, in different conditions or
life stages, or even in different parts of the same cell [13–17]. These modulations adapt to chang-
ing environments and are needed to accommodate properties such as growth, morphogenesis,
and polarity. For instance, cell walls can thicken and stiffen to better protect cells against drastic
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Trends in Microbiology
physical insults such as temperature or osmotic changes during prolonged nutrient starvation or
spore preservation [18,19]. Major cell wall modifications are also hallmarks of fungal infections as
cells move within the different chemical environments of their hosts [14].

Turgor pressure values range around 0.5–2 MPa, with some unusually inflated compartments of
fungal pathogens, called appressoria, which can build pressures of up to 8–10 MPa [20]. Typical
estimates of turgor pressure in proliferating yeast cells are about 0.5–1.5 MPa [3,21,22], resulting
fromwater influx driven along an osmotic gradient, associated with higher solute and ion concen-
trations in the cytoplasm compared to the extracellular milieu (Figure 1B). Turgor pushes the
plasma membrane against the cell wall and deforms it elastically, providing a mechanical engine
for cell growth and invasion and to resist external forces. Turgor is vital for fungal cell physiology,
and cells have evolved robust homeostatic systems to maintain it even against drastic osmotic
variations in the environment (Figure 1B). When cells are exposed to high osmolarity, turgor pres-
sure rapidly decreases as the efflux of water across the semipermeable plasma membrane leads
to shrinkage of the cytoplasm. As a result, the plasma membrane disconnects from the cell wall,
leading to activation of the high osmolarity glycerol (HOG)-signaling cascade, which, in turn,
closes glycerol channels and triggers synthesis of intracellular glycerol to restore osmotic balance
and reinflate the cell [23–25]. Conversely, when cells are exposed to hypotonic solutions, water
influx inflates the cytoplasm and causes cell expansion. Adaptation to hypo-osmotic shocks is
poorly understood but may involve mechanosensitive channels that open to release water from
the cytoplasm [26,27]. As cells expand, the increased surface is provided by flatteningmembrane
reservoirs called eisosomes [28].

Turgor pressure generates intrinsic mechanical stress on the cell wall
The primary mechanical role of the cell wall is to balance the tensional stress generated by turgor
pressure (Figure 1C). For a typical yeast cell of radius R = 2 μm, the tension T created by a turgor
pressure of P = 1 MPa will be of T = PR/2 = 1 N/m. This is three orders of magnitude higher than
the tension needed to lyse the plasma membrane [29], highlighting the vital role of the cell wall in
ensuring surface integrity. Accordingly, digesting the cell wall with lytic enzymes, or piercing it with
a laser, can cause rupture of the membrane and cell death. The cell wall is thus put under tension
and strained by turgor pressure. Its elastic polysaccharide bonds resist this tensional stress re-
sulting to a force balance that contributes to cell shapes and sizes. The wall of a rounded cell
of radius R bears a tensional stress (the force per unit area along the plane of the wall) σ = PR/
2h, with h the thickness of the wall. The Hooke’s law (Box 1) for elastic materials gives σ = Yε
with Y the Young’s modulus of the cell wall and ε the elastic strain in the wall, yielding PR =
2hYε. Estimates of typical elastic strains in yeast are around 20–30%, meaning that cells will re-
duce their radius by 20–30% when turgor is brought to 0 [8]. Elastic failure, at which the cell
wall may start to rupture, has been estimated at ~45% in S. cerevisiae [30]. Thus, turgor-
derived stress entails significant risk of cell wall lysis. An interesting feature of this force balance
is that stress increases with cell size. Fungal cells ranging in size over two orders of magnitude
resist extreme tension on the wall as they grow. Cells may thicken or stiffen their cell walls bymod-
ulating elastic bonds or adding extra layers, allowing elastic strains to remain below failures [8].

An important function of cell wall stress generated by turgor is to promote cell growth [31]
(Figure 1D). Yeast and fungal cells with reduced pressure almost always slow or even halt
growth [3,31]. Growth has been modeled by assuming that the cell wall can undergo plastic,
irreversible deformations above a stress threshold, and exhibit viscous behavior so that the
rates of deformations increase with stress [32]. Thus, in order to grow, cells may transiently
thin, soften, or fluidize their cell wall, which entails risks of failure, highlighting how growth is a
life-threatening process for walled cells. One common strategy to cope with this challenge is
Trends in Microbiology, Month 2021, Vol. xx, No. xx 5
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to compartmentalize cell wall properties and restrict wall remodeling to one location in the ge-
neric process of anisotropic growth, typically referred to as polarized growth. Polarized growth
occurs in budding yeast during three physiological processes: budding, mating, and filamen-
tous growth [33–35]. Different physiological signals initiate these processes, including sufficient
nutrition for budding, exposure to a pheromone gradient [36], and starvation to trigger filamen-
tous growth to escape scarce nutrient conditions [37]. Tip growth is also the main growthmode
of both fission and filamentous yeasts, including S. pombe, Candida albicans, and most fungal
hyphae.

Cyclin-dependent kinase 1 (Cdk1) in complex with the G1 cyclins (Cln1/2/3) drives polarized
growth in budding yeast (Figure 2) [38,39]. Cdk1 phosphorylates Cdc24 [39], a GTP exchange
factor, which in turn activates the small GTPase Cdc42, a conserved master regulator of cell po-
larity [40–42] (for reviews see [35,43]). Cdc42 recruits the polarisome complex, which uses its
combined activity of actin filament nucleation and exocytosis to deliver cargo required for
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Figure 2. Reorganization of cell polarity is essential to survive external mechanical forces. Unicellular fungi
including Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans, undergo different modes o
polarized growth in a context-dependent manner. As a part of cell division, S. cerevisiae and C. albicans undergo
budding, while S. pombe undergoes fission. Similarly, polarized growth occurs when these organisms respond to
pheromones, forming a polarized protrusion, called a 'shmoo', or to starvation, forming hyphae. Polarized growth is driven
by cyclin-dependent kinases (Cdk1) and involves directed delivery of cell-growth components towards the sites of growth
(left column). It further requires regulated degradation of the cell wall at sites of growth, pushing of membrane forward
using internal turgor pressure, and resynthesis of the cell wall at the new position. As a result, a gradient in cell wal
mechanics is formed, with softer regions at sites of polarized growth. Given the mechanosensitivity of the process, cells
have to finely regulate cell polarization. When subjected to mechanical forces, cells activate a signaling network to rapidly
depolarize their actin cytoskeleton and halt their cell cycle by inhibiting Cdk1. After stress release, when the net force
equalizes, cells repolarize and restart the cell cycle (middle column). Cells lacking such mechanosensitive mechanisms fai
to depolarize or repolarize towards less stiff sites and, as a result, continue polarized growth in the presence of externa
forces, leading to cell lysis, predominantly at sites of polarized growth (right column).
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polarized growth [44,45], including the components of the cell wall synthesis machinery [46,47].
As a result of polarized cell growth, cell tips become thinner or softer, and wall segments transfer
or flow from the apex to the side, likely thickening and stiffening the cell wall away from the
tips [13]. Recent studies have modeled the process of tip growth using different frameworks and
hypotheses [48,49]. Some of these models can remarkably account for important aspects such
as variations in tip shape or growth speed [50]. However, experimental validation is limited by the
difficulty of properly quantifying the time-evolution of local mechanical parameters in the cell wall.

Mechanical feedback mechanisms for polar growth and infections
Reorganization of cell polarity by external forces
Since growth is a vulnerable process, prone to cause lysis, fungal cells have evolved
mechanotransduction mechanisms to reorganize polarity and wall synthesis when they encoun-
ter external forces. Yeast cells respond to cell wall damage and external mechanical signals by
rapid growth arrest and depolarization due to the inactivation of Cdk1 (Figure 2) [6,51,52]. Depo-
larization involves disruption of actin cables and destabilization of the polarisome complex at
growth sites. For instance, compressive stress applied to S. cerevisiae using a flattening
microfabricated roof (Box 2) disperses Bni1 and other polarisome components, leading to
uniform synthesis and strengthening of the stretched cell wall, thereby preventing cell lysis [6].
However, when a transient and/or local external mechanical pressure is applied, the original
polarity site is rapidly abandoned and a new site is assembled at a different location. Conversely,
when the cell wall is locally damaged, by use of a laser beam for instance, the polarisome complex
rapidly relocates to the damaged site, directing actin polarization and targeted delivery of cell wall
synthesis enzymes to repair the damage [53].

Conceptually equivalent behavior is observed when filamentous fungi encounter a physical bar-
rier, and thus compress their cell wall from the force of their own growth. In such cases, the
Spitzenkörper – a structure akin to the polarisome complex that contains secretory vesicles –

will abandon the contact site where force is applied to rapidly reform at a new site away from
the obstacle [54]. In fission yeast, when an active growth zone encounters a physical barrier,
the polarity complex dissociates from the tip and wanders along the cell cortex until it is stabilized
at a newmechanically favorable site to restart polarization [55]. Such depolarization/repolarization
processes may be widespread in fungi, and not only allow navigating away from obstacles, a
process called thigmotropism, but are likely also relevant to support several modes of fungal
infection.

Stabilizing the polarity axis is crucial for fungal invasion
There are other instances in which growth direction and polarization must be stabilized for suc-
cessful invasion of host tissues by fungal pathogens (Figure 3). One example is the formation of
penetration pegs that act as micrometric piercing needles to breach the stiff plant cuticle in many
plant pathogens. These pegs form at the contact between a fungal specialized structure, called
an appressorium, and the plant cell wall. The appressorium is a dome-shaped specialized cell,
which firmly adheres to the cell surface. It is formedwhen the cell at the tip of the germ tube ceases
polarized growth, possibly by encountering a rigid surface. It then inflates by enhanced glycerol
synthesis to increase turgor pressure, which, in the appressorium, can be as high as 8–10 MPa
(80–100 atmospheric pressure) [20]. The cell wall of the appressorium is melanized to sustain
the pressure and limit glycerol efflux, thus acting as a sealing cage [56,57]. The penetration peg
grows from the appressorium into the plant cell surface, fracturing the plant cell wall to allow the
fungus to invade the host tissue. In the pathogenMagnaportheoryzae,which causes rice blast dis-
ease, firm stabilization of the polarity machinery is achieved by the assembly of a septin ring that
acts as a diffusion barrier to channel the polar growth machinery at the exact point of penetration
Trends in Microbiology, Month 2021, Vol. xx, No. xx 7
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Figure 3. Fungal pathogens enhance the turgor pressure to breach stiffer host tissues. (A) Fungal pathogens are
able to invade host tissue when their turgor pressure becomes higher than the surface stiffness and/or pressure of the host
cell. The turgor pressure in the pathogen cell is often increased by boosting the cytosolic concentration of solutes such as
glycerol. (B) The mechanism of host cell penetration in the rice fungal pathogen, Magnaporthe oryzae. The pathogen, M.
oryzae, penetrates a host cell by stabilizing the polarity complex and generating high turgor pressure that exceeds the
stiffness of the rice plant cuticle. Generating high turgor pressure is achieved in a dome-shaped appressorium via
increased glycerol production and preventing glycerol efflux by melanization. After the pathogen enters the host cell the
hyphae depolarize, when blocked by a stiffer cell structure, and re-establish polarized growth in a different direction to
bypass the obstacle. The hyphae explore the cytoplasm until they find a weaker spot, such as the cell-wall-free
plasmodesmata, allowing the pathogen to penetrate and colonize the neighboring cell.

Trends in Microbiology
[56]. Thus, invasion requires high turgor pressure and channeling in one focused direction, thereby
generating a highly localized force to breach occlusions. Once the pathogen is inside a plant cell, it
invades neighboring cells though plasmodesmata [58,59]. During this process, the polarity com-
plex on hyphal tips continuously reorients until it finds weaker plasmodesmata regions. Persistent
localization of the polarity complex and stabilization of hyphal tips using mechanical feedback
mechanisms may lead to development of a narrower infection peg, called a transpressorium,
which M. oryzae use to transverse neighboring cells through plasmodesmata [59]. Animal patho-
gens, such as C. albicans, similarly depend on physical penetration mechanisms to infect host tis-
sueswithout rigid cell walls. However, they are not known to form an appressorium, although some
species are able to breach medical devices. In the case of the human pathogen Wangiella
dermatitidis, the invasive hyphal growth depends on melanin biosynthesis [60], suggesting that
the disruptive physical forces may use similar mechanisms to increase turgor pressure.

How pathogens sense and orchestrate the underlying processes required for invasion remains
unclear. We speculate that, when pathogens encounter rigid host tissue, they activate a signaling
network that triggers enhancement of turgor pressure. Cells must have evolved mechanisms to
sense whether they have reached a critical turgor threshold sufficient to penetrate their hosts. In-
deed, a recent study found that Sln1, a histidine-aspartate kinase, localizes at the appressorium
pore ofM. oryzae in a turgor-dependent manner and contributes to sensing the turgor threshold
required for breaching the rice leaf cuticle [61]. If the turgor pressure can be maintained, or is
greater than the resistance from the host, there is less external force acting on the hyphae.
Thus, below a threshold of stress, cells continue polarized growth and manage to breach the
host tissue. This turgor threshold may vary in different pathogens, contributing to their capacity
to invade specific host tissues. However, if the turgor pressure is lower than the Young’s modulus
of the host tissue, polar growth is halted, destabilizing the polarisome complex at growth sites
(Figure 3A). The polarisome complex migrates and reassembles in an adjacent region with
8 Trends in Microbiology, Month 2021, Vol. xx, No. xx
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lower external force, thereby reorienting growing tips. Through this repolarization process, fila-
mentous growth turns away from rigid, impenetrable regions and instead searches for softer
sites. Indeed, both plant and animal pathogens were shown to invade their host tissue at softer
points [4,58,62]. Taken together, it is plausible that fungal pathogens use the polarisome complex
as a molecular probe to scan the stiffness of the host tissue and find weaker/softer regions where
they can sustain polarized growth for successful invasion.

Surface mechanosensors can convert physical forces into biochemical signals
Yeast cells achieve appropriate mechanoresponses, including cell-cycle arrest, depolarization,
and cell-wall strengthening, by converting physical forces into biochemical signals. The net resul-
tant forces are detected by cell-surface proteins called mechanosensors and cause phosphory-
lation changes in signaling proteins and/or an increase in the concentration of cytoplasmic
calcium ions. One important class of mechanosensors in yeasts are the single-pass cell-surface
proteins that have a short cytoplasmic tail and a highly glycosylated extracellular domain that
functions as a nanospring (Figure 4). Another class consists of stretch-activated ion channels.
Mechanical forces may also be sensed by topological changes that occur in cell membranes, re-
leasing and activating signaling proteins. In the following text, we describe howmechanosensors
convert external mechanical forces acting on the cell surface into intracellular biochemical signals.

A conserved family of mechanosensors containing nanospring-like domains
Wsc1 is among the best describedmechanosensors and coordinates mechanotransduction and
cell wall integrity in budding yeast [47,63–65]. This transmembrane protein accumulates at sites
of polarized growth and functions as an upstream regulator of the Cell Wall Integrity (CWI) path-
way that adjusts cell wall synthesis in response to chemical or heat stress [65–67]. Wsc1 is con-
served across fungi, and live cell analysis of cell wall thickness in S. pombe suggests that Wsc1
functions as a surface sensor to promote homeostasis and safeguard cell wall integrity at growing
tips [13,63]. Wsc1 is one of five putative cell wall surface sensors in S. cerevisiae (Figure 4A),
which belong to either the Wsc or Mid2/Mtl1 family. These mechanosensors share an extracellu-
lar serine/threonine-rich (STR) domain (reviewed in [68]), with more than 50% serine or threonine
residues. Transfer of mannose groups to these residues yields highly mannosylated transmem-
brane proteins [69], converting their folded structure into a linear rod that projects into the cell
wall matrix [68]. The functional relevance of mannosylation is suggested by the mechanosensitive
phenotype of cells lacking the enzymes required for this post-translational modification [67].

Direct evidence that STR cell-surface proteins sense external mechanical forces is provided by
atomic force microscopy (AFM) [70]. AFM was used to apply force to a chimeric Wsc1 fused
with the STR domain of Mid2, revealing a Hookean spring behavior, in which the chimera extends
linearly with force. This nanospring-like property of Wsc1 was validated in vivo, where compressed
Wsc1 was visualized at thinner cell walls in growth regions. Wsc1 harbors a short cytoplasmic tail
which is constitutively phosphorylated on multiple sites [67]. It is plausible that unbalanced turgor
and extracellular forces at growth sites squeeze the cell wall, driving compression of the spring-
like STR domain of Wsc1 (Figure 4A), which, in turn, leads to dephosphorylation of those cytoplas-
mic sites, eliciting downstream signaling to locally increase cell wall synthesis. Once the cell wall is
repaired and stress lowered, the STR domain may extend back, halting the process. Thus, Wsc1
provides an appealing module to detect local mechanical stress impinging on the cell wall and ac-
tivate compensatory cell wall synthesis enzymes to strengthen its integrity.

In addition to Wsc1, recent evidence implicated Mating-induced death 2 (Mid2) as a mechanore-
ceptor activated by compressive stress [6]. Mid2 was originally identified in a screen for genes
that protect cells from prolonged pheromone exposure, as mid2Δ cells lyse during shmoo
Trends in Microbiology, Month 2021, Vol. xx, No. xx 9
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Figure 4. Mechanosensors translate mechanical forces into biochemical signaling pathways to orchestrate a coordinated mechano-stress response.
(A) A conserved family of mechanosensors containing nanospring-like domains. In budding yeast, there are five putative cell-surface sensors containing a serine/threonine-
rich (STR) domain in the extracellular cell wall region. This extracellular nanospring is compressed by mechanical force, and this conformational change is then converted
into intracellular biochemical stimuli by the cytosolic tail. To date, only Wsc1 and Mid2 were shown to respond directly to mechanical forces. CT, cytoplasmic tail; TMD,
transmembrane domain; PM, plasma membrane; CRD, cysteine-rich domain. The positions of a cysteine (C) residue within the CRD domain, the percentage of serine
threonine (ST) residues within the STR domain, and the residue that is N-glycosylated in Mid2 and Mtl1 are indicated in the figure. (B) Conservation of
mechanotransduction pathways across Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans. Compressed STR mechanosensors activate
the conserved cell wall integrity (CWI) MAP kinase pathway, which, in turn, confers cell survival by blocking cell-cycle progression and depolarizing the actin
cytoskeleton to prevent polarized growth. Moreover, activated MAP-kinase phosphorylates the transcriptional regulators Swi4/6 cell cycle box-binding factor (SBF) and
Rim1 to allow cell wall remodeling. The mechano-stress responses, pathway topology, and signaling proteins are highly conserved across fungi. (C,D) Multiple
intracellular and extracellular mechanosensors coordinately trigger appropriate cellular responses to various physical insults. Depicted is the yeast cell surface and
various intracellular responses in the absence (C) or presence (D) of mechanical stress. In addition to the STR receptors activating the CWI pathway, yeast cells contain
stretch-activated calcium channels, composed of Mid1 and Cch1, which sense multiple mechanical signals impinging on the cell wall and plasma membrane. Ca2+

influx activates a myriad of targets, among them cytoskeletal components and the calcineurin complex. Calcineurin also triggers nuclear translocation of the
transcription factor Crz1. The Msb2/Sho1 module not only senses changes in osmolarity but may also activate Mpk1 and other MAP kinases in response to
compressive mechanical stress. Finally, membrane tension is sensed by flattening of eisosomes, which results in activation of TORC2 (target of the rapamycin complex
2) after release of Slm1/Slm2. TORC1 and its downstream kinase, Ypk1, trigger cytoskeletal reorganization and sphingolipid biosynthesis. Together with the STR
receptors, spatial and temporal activation of this mechanotransduction network preserves mechanical integrity by strengthening the cell wall and cellular membranes,
and by regulating turgor pressure, cell cycle arrest, and polarized growth.
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formation [71]. Likewise, mid2Δ cells burst at bud emergence when exposed to compressive
stress applied by a pressure-controlled microfluidic device (Box 2; [6]). Indeed, upon compres-
sion, Mid2 activates a signaling response that depolarizes the actin cytoskeleton, thereby
inhibiting polarized growth. The STR domain of Mid2 is essential for this function [6], indicating
that compressive physical stress is directly sensed by its nanospring domain.

We speculate that STR domains may generally function as nanosprings that respond to mechan-
ical forces. Although individual STR domains may respond differently to force intensity or type,
they also sense mechanical stress at distinct cellular compartments. Indeed, Wsc1 accumulates
at sites of polarized growth, while Mid2 localizes uniformly to the cell cortex [6,65]. Mid2 contains
a glycosylated asparagine at the N terminus, while Wsc-family sensors encompass a conserved
lectin-like domain that was proposed to promote binding to newly synthesized cell wall structures
at growth sites [72]. Indeed, recent data in fission yeast suggest that this lectin-like domain relo-
cates and clusters Wsc1 to sites where forces are locally applied onto the cell wall [73]. Moreover,
Wsc1 localization to polarized sites requires its cytoplasmic tail, which stimulates endocytic traf-
ficking of the mechanoreceptor [74].

Like Wsc1, Wsc2 and its paralog Wsc3 have been implicated in maintaining cell wall integrity and
recovery from heat shock, while Mtl1 preserves cell integrity during glucose starvation and oxida-
tive stress [75]. Further work is required to study the phenotypes of cells deleted for these
mechanosensors, and in particular compare their expression and subcellular localization in re-
sponse to different stress conditions.

STR mechanosensors activate the CWI MAP kinase pathway
The CWI pathway emerged as a core signaling pathway that mediates cellular responses to intrin-
sic and extrinsic cell wall threats downstream of STR mechanosensors (Figure 4B). Its compo-
nents are highly conserved across budding, fission, and filamentous fungi, suggesting that the
type of mechanical cues and downstream responses are comparable (reviewed in [68,76,77]).
CWI proteins accumulate at sites of polarized growth where they monitor and adapt cell wall syn-
thesis to local mechanical needs. Moreover, they are recruited to damaged cell wall structures to
reinforce integrity [53,68]. Activated STR mechanosensors recruit the exchange factors Rom1 or
Rom2 (Rom1/2) by binding to their intracellular tails and activate a dedicated MAPK module via
Pkc1 (reviewed in [78]). In addition, Pkc1 phosphorylates the signaling scaffolds Far1 and Ste5,
thereby preventing pheromone signaling and mating responses in the presence of cell wall stress
[51,79]. A similar crosstalk mechanism may inhibit pheromone signaling in the presence of oxida-
tive stress [80]. ActivatedMpk1 triggers nuclear translocation of Rlm1 and the SCB binding factor
(SBF) complex to induce a transcriptional program, including upregulation of cell wall synthesis
genes [81,82]. Moreover, Mpk1 arrests the cell cycle by phosphorylating the Cdk1 inhibitor
Sic1 and regulates unknown substrates that disrupt polarized actin cables and thereby counter-
act polarized growth [83,84].

Intracellular and extracellular mechanosensors without STR domains
While STR domainsmay provide force-sensing capacities to a family of membrane proteins, other
fungal mechanoresponsive components do not contain such nanosprings. For example, Mid1
and Cch1 form a complex that allows rapid influx of calcium ions into the cytosol upon cell wall
damage, increased mechanical stress and/or membrane tension [6,85,86] (Figure 4C,D). The
molecular mechanisms opening Mid1/Cch1 channels upon mechanical stress remains unclear.
The calcineurin phosphatase complex is among the major targets of intracellular Ca2+,
and cells lacking calcineurin subunits are sensitive to several environmental stress conditions
[87–93]. Activated calcineurin dephosphorylates the transcription factor Crz1, resulting in its
Trends in Microbiology, Month 2021, Vol. xx, No. xx 11
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Outstanding questions
How do cells regulate mechanosensitive
intrinsic processes when exposed
to external mechanical forces? What
are the signaling networks preserving
cellular integrity under these
circumstances?

How is cell wall remodeling regulated
and coordinated with polarized
growth?

Plant pathogens use specialized cells
generating high turgor pressure to
penetrate rigid structures. What are the
molecular mechanisms orchestrating
this complex process? Do animal
pathogens use similar mechanisms to
invade stiffer host tissues? Can the
underlying mechanisms be targeted to
develop antifungal agents?

Pathogens need to stabilize the
polarization machinery and sustain tip
growth to breach host tissues. While
recent studies revealed how yeast
cells reorient their polarity axis when
encountering rigid surfaces, the
underlying signaling mechanism in
pathogens remains unknown.

How do cell wall surface sensors,
including those with STR domains,
translate mechanical forces into bio-
chemical signals? Although the extra-
cellular STR domain functions as a
nanospring it remains unclear how
these conformational changes trans-
late into intracellular recruitment of the
downstream components such as
Rom2.

Fungi harbor multiple cell surface
sensors with STR domains, but it is
yet unknown how these sensors
achieve specificity towards mechanical
forces and subcellular locations.

Appropriate mechano-stress re-
sponses are orchestrated by a con-
served signaling network, including
MAPK modules (CWI and SMuSh),
TORC2, and calcium signaling. How
are these pathways spatially and
temporally regulated, what are the un-
derlying positive and negative feed-
back mechanisms, and how do the
individual components synergize and
crosstalk?

Can the cellular mechanisms activated
by physical forces in unicellular
rapid nuclear translocation [95–97], orchestrating a transcriptional program to strengthen the cell
wall [68]. Mechanically gated calcium channels are present in cells ranging from bacteria to
human cells (reviewed in [98]), suggesting that Ca2+ signaling is a conserved intracellular
response to mechanical stress. Piezo1 and Piezo2 are mechanosensors that translate forces
on the plasma membrane into cation influx into the cytosol in animal cells [99], while piezo homo-
logs in plants localize to the vacuole and regulate its morphology during tip growth, possibly by
sensing vacuolar turgor [100].

Using a microfluidic bioreactor (Box 2), it was found that yeast cells also sense compressive
stress through a module consisting of the mucin Msb2 and the plasma membrane sensor
Sho1 (Figure 4C,D). Indeed, cells lacking Msb2 or Sho1 often lyse when they reach high density
upon expansion in confined microenvironments [52]. Moreover, Msb2 and Sho1 protect cells
from high osmolarity [101] by increasing turgor pressure through blocking water efflux and in-
creasing glycerol synthesis. It is thus possible that Msb2/Sho1 sense mechanical stresses asso-
ciated with hyperosmotic conditions. Interestingly, Msb2 harbors a highly glycosylated
extracellular domain with an autoinhibitory function [102]. It is likely that mechanical forces acting
on the cell surface release this autoinhibitory function, thereby converting mechanical cues into
intracellular biochemical signals. Release of autoinhibition is mediated by cleavage of this extra-
cellular domain by the aspartic protease Yps1, which is attached to the plasma membrane via
a glycosylphosphatidylinositol (GPI) anchor [102]. Further work is required to elucidate the mech-
anism activating Yps1 cleavage in response to contact forces.

Finally, the target of the rapamycin complex 2 (TORC2) responds to mechanical cues generated
on the yeast cell membrane (Figure 4C,D). This evolutionarily conserved signaling complex regu-
lates actin remodeling [103] and modulates lipid synthesis to balance membrane tension and in-
ternal turgor pressure [104]. TORC2 localizes as puncta at the plasma membrane, adjacent to
eisosomes [105]. When membrane tension increases through raising turgor pressure, changes
in lipid composition, or physical stretching, eisosomes flatten and release the Slm1 and Slm2
paralogs, which, in turn, activate TORC2 signaling [104]. Conversely, loss of membrane tension
clusters TORC2 into PtdIns(4,5)P2-enriched plasma membrane (PM) domains and inactivates
it [106], implying that TORC2 uses distinct mechanisms to sense increased and decreasedmem-
brane tension to maintain membrane homeostasis.

Taken together, available results show that different mechanosensors respond to multiple intra-
cellular and extracellular mechanical cues impinging on the cell wall or plasma membrane
(Figure 4C,D) and cooperate to accomplish intracellular responses that adapt cells to different
types and magnitudes of physical force. Interestingly, genetic experiments suggest that Ca2+ sig-
naling and CWI activation synergize to respond to mechanical stress. Indeed, lysis of cells ex-
posed to compressive stress is strongly increased if cells lack both Mpk1 and Cnb1 compared
to either single mutant [6]. Similarly, the 'SMuSh' pathway downstream of the Msb2/Sho1 sen-
sors synergizes with the CWI pathway to respond to mechanical pressure in confined environ-
ments [107]. Further studies are warranted to understand how these mechanoresponsive
pathways are spatiotemporally regulated to restore cell integrity and survival under mechanical
stress conditions.

Concluding remarks
The ultimate goal of the mechanotransduction network is to strengthen the cell wall and plasma
membrane in response to diverse physical perturbations while maintaining mechanical integrity
and physiological function (Figure 4D). Mechanical insults can act either on the cell surface or in-
ternal structures and may occur in parallel or sequentially. In turn, mechanotransduction
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systems serve as a paradigm to study
mechanical stress signals in health and
disease?
pathways function in an adaptive or sustained manner and are activated around the cell or at lo-
calized sites. For instance, calcineurin- and Pkc1-activated pathways cooperate to antagonize
polarized cell growth and ensure cell survival upon compressive mechanical stress [6]. While
early responses depend on adaptive Ca2+ signaling and transient activation of the general stress
response, Mpk1 induces sustained cellular responses. Similarly, the SMuSh and CWI pathways
cooperatively confer adaptation to persistent mechanical pressure [52]. While TORC2 responds
to cell membrane tension, its involvement in other types of mechanical stress remains unclear.
Thus, a combinatorial analysis of mechanosensitive signaling pathways is needed to understand
how individual components synergize and crosstalk with each other to orchestrate the complex
cellular responses to physical stress (see Outstanding questions).

Althoughmammalian cells lack a rigid cell wall and featuremuch lower cytoplasmic pressure, they
share interesting parallels with respect to mechanosensing and downstream responses. Mam-
malian cells express mechanosensitive proteins such as ion channels, G-protein-coupled recep-
tors, integrins, and cadherins that sense different types of mechanical cues such as shear stress,
stretch forces, and osmotic changes (reviewed in [108]). Similar to yeasts [6], they also express
mechanosensors which convert compressive forces into intracellular signals. For example,
human polycystin-1 (PC-1)/polycystin-2 (PC-2) form heteromeric calcium channels, similar to
Mid1 and Cch1, but use WSC domains to respond to shear force in kidney tubules [109,110].
Likewise, ERK5, the closest mammalian Mpk1 homolog, is activated by physical stimuli, including
osmotic and shear stresses [111–113], and ERK5-deficient endothelial cells are susceptible to
shear stress [111]. Interestingly, ERK5 regulates the epithelial–mesenchymal transition (EMT)
[114] which involves reorganization of the actin cytoskeleton and loss of cell polarity. ERK5 may
respond to compressive forces arising during tumor expansion in confined microenvironments,
possibly contributing to EMT and cancer progression. Thus, organisms as simple as yeast
have evolved conserved mechanisms to respond to mechanical forces, which may have implica-
tions for an understanding of mechanotransduction in health and disease of complex organisms.
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