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Abstract – Motivated by the centering of microtubule asters in cells, we study the general prop-
erties of three types of centering forces: bulk pulling forces, surface (cortical) pulling forces, and
pushing forces. We evidence unexpected scaling laws between the net force on the aster and its
position for different modes of centering, and also address how the effective centering stiffness
depends on the cell size. Importantly, we find that both scaling laws and effective stiffness depend
on the spatial dimensions, and thus that 1D and 2D ansatz usually considered could misguide the
interpretation of experimental results. We also show how scaling laws depend on the cell shape.
While some hold for any convex cell, others strongly depend on the shape. By deriving these scal-
ing laws for any spatial dimension, we generalize these results beyond the biological perspective.
This analysis provides a broad framework to understand shape sensing mechanisms.

Copyright c© EPLA, 2019

In animal eggs after fertilization, the male pronucleus
reaches the center of the cell, seemingly following only ge-
ometrical cues: in deformed cells, the pronucleus seems
to stop at the center of mass [1]. It is remarkable that
a small biological object can robustly find the center of
the containing space autonomously. It has thus gained a
lot of experimental and theoretical attention. The pronu-
cleus creates an aster, a radial structure of stiff elastic fila-
ments called microtubules. Molecular motors attached to
structures in the cell volume (such as vesicles or the endo-
plasmic reticulum) and/or to the surface (the cell cortex)
pull on microtubules, while microtubule growth creates a
pushing force when they are in contact with the cell cor-
tex. In many species, a combination of these mechanisms
allows for efficient aster centration [2–6]. However, which
of bulk pulling, cortical pulling, or pushing is dominating
in a given species, remains controversial [7].

While more biochemical and biophysical methods be-
come available to address this issue, surprisingly little is
known on how the cell-scale centering forces depend on
how forces are applied on individual microtubules. In this
article, we aim at clarifying the mathematical properties
of centering forces according to the centering mechanism.
We use a single formalism to encompass three different
mechanisms, and study their scaling properties, i.e., how
the integrated force on the aster scales with the aster dis-
tance to the cell center, and how the effective centering
stiffness scales with cell size. We find that some centering

mechanisms exhibit surprising scaling properties. We first
focus on biologically relevant case studies before general-
izing to an agent seeking the center of a space in n di-
mensions. This allows us to address how centering forces
depend on dimensionality and container geometry.

Centering by bulk pulling. – We consider an aster
centering by motors in the cell volume pulling on micro-
tubules emanating from the aster. Let us call R the radius
of the cell if it is spherical, or its characteristic size oth-
erwise and l the length of a microtubule normalized by
R; the pulling force on the microtubule should depend on
the number of motors attached to it, and thus upon l. It
is generally assumed that the magnitude of the force on
a microtubule is f1l

p, where p is an exponent describing
the interaction of the microtubule with motors, and f1 is
a typical force. For instance, we expect a scaling exponent
p = 1, if motors are not limiting, so that they saturate the
microtubule length, and p = 3 if motor attachment is lim-
ited by the availability or binding time of motors [1,8,9].
The microtubule length l should depend upon its orienta-
tion θ and upon x the position of the aster normalized by
R. Calling N the total number of microtubules, the net
force on the aster projected on the axis Ox reads

f̄p(x) =
Nf1

2

∫ π

0

l(x, θ)p cos θ sin θ dθ . (1)

Here we averaged over all filament orientations θ (see fig. 1,
left), and implicitly integrated over all orientations around
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Fig. 1: Illustration of the shapes considered, in the Oxy plane.
From left to right: sphere, cone, truncated ball, doublet. In
3D, all shapes are symmetric around their Ox-axis.

the Ox-axis (as is described by the factor sin θ), assuming
microtubules to have a uniform angular distribution. Be-
cause we are interested in scaling properties rather than
dynamics, we will not consider the early stages when the
aster is small, and always assume that microtubules have
grown long enough so that they are all touching the cor-
tex. In this case the function l(x, θ) depends on the shape
of the cell. In a sphere, we have

l(x, θ) = −x cos θ +
√

1 − x2 sin2 θ , (2)

Taking the specific case of a spherical cell, we already see
interesting scaling properties, fig. 2. For p = 1, f̄1(x)
is linear with x as could be expected. Remarkably, we
find that f̄4 is also linear with x, but that f̄2 and f̄3

are sub-linear, although the forces per microtubule length
are super-linear with microtubule length. Only for p > 4
(e.g., p = 5) does the net force f̄p become super-linear
with x, see fig. 2. We will see later that these power laws
depend on the dimension considered. To understand if
these results hold in non-spherical geometries, we consid-
ered a conical cell shape (see fig. 1) —mimicking that of
cells confined in microfabricated chambers [1]— and found
that f̄1 is no longer linear with x; f̄1, f̄2 and f̄3 are now
non-monotonous with x and f̄5 is still super-linear (fig. 2).
Interestingly, f̄4 is still linear with x. We will see in the
second part of this article that this corresponds to a more
general result: in an n-dimensional convex space, the cen-
tering force for p = n+1 is always linear. Centering in cells
is often described by a stiffness, i.e., the stiffness of an elas-
tic potential that would yield the same force profile [2,10].
Although we can only rigorously identify a centering stiff-
ness when the force is linear with x (e.g., for f̄4), we can
define an effective centering stiffness K = −∂xfp(x = 0).
For a sphere, we find K = Npf1/3R; for other shapes,
we expect the same result up to a geometrical factor γ
that depends on p and on cell shape but is independent of
R, since all distances can be normalized by R. For bulk
pulling forces, the characteristic force f1 also depends on
system size as f1 = Rpkp. For instance if p = 1, k1 is the
motor force per unit microtubule length; for p = 3, k3 is
the force per unit volume, and so on. Therefore, we expect
the effective stiffness to be

K = γNpkpR
p−1/3 , (3)

in which γ = 1 when the cell is spherical. Thus, the de-
pendence of the stiffness on cell size varies with the scaling
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Fig. 2: Top: net centering force in a spherical cell by bulk
pulling forces of different power law f̄p and by cortical pulling
f̄ ′, as a function of the position x (where x is normalized by the
typical size R). Bottom: centering forces by bulk and cortical
pulling in a conical cell (here the cortical pulling force was
scaled for visual convenience). Bulk and cortical pulling forces
are normalized by Nf1 and Mfm, respectively (see text).

exponent p. For instance, if the force per microtubule
is proportional to their length (p = 1), then K is inde-
pendent of cell size. In addition, we will see later that
stiffness also depends on the dimension, and as such, a
stiffness estimated in 2D is 50% bigger than that in 3D,
i.e., in 3D, one needs 50% more microtubules than would
be estimated from a 2D ansatz.

Centering by pushing. – Assuming microtubules to
be radially distributed as in bulk pulling, pushing can
only work if the force per microtubule depends on its
length; otherwise, we would get a net force f̄0(x) = 0 (see
eq. (1)). Two factors can contribute to this: microtubule
buckling, because the buckling force for a rod depends on
its length, and microtubule dynamics, because the time
spent pushing on the cortex depends on the distance to
the cortex [11]. In the appendix, we show that in the lat-
ter case, the fraction of microtubules pushing against the
cortex should be l0/l, with l the normalized distance to
the cortex and l0 a dimensionless parameter comparing
the growth speed normalized by R to the catastrophe rate
of microtubules at the cortex.

Centering by pushing can therefore be treated simi-
larly to bulk pulling. For dynamic microtubules, we have
p = −1 and f1 = −fgl0, with fg the polymerization force
of a microtubule. fg should be of a few piconewtons,
and independent of microtubule length. For a buckling
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Fig. 3: Top: net centering force in a spherical cell by bulk
pulling forces of different power law f̄p, as a function of the
position x (where x is normalized by the typical size R). p = −1
corresponds to dynamic microtubules and p = −2 to buckling
microtubules. Insert: centering forces by pushing in a conical
cell. Forces are normalized by Nf1 (see text).

microtubule, we have p = −2 and f1 = −fb, with fb the
Euler buckling force: fb = π2κ/R2 (with κ the bending
modulus of a microtubule [12]). Centering by pushing
forces is not linear, and leads to very high forces far from
the center, and low forces close to the cell center, see fig. 3.
We can see that the behaviour of these forces depends lit-
tle on the cell geometry, be it spherical or conical, fig. 3.

We can use our previous result for the effective stiffness,
and we find K = γNfg/3R for dynamic microtubules
and K = 2γNκπ2/3R3 for buckling microtubules (with
γ = 1 for a spherical cell). We see, that the dependence of
the effective stiffness on cell size markedly differs between
the two pushing mechanisms, and could thus be used to
discern the mechanisms at play. Note that assuming a
polymerization force of 6pN and a microtubule stiffness
κ = 2 × 10−23Nm [12], buckling should occur as soon as
microtubules are longer than 5μm; we should thus expect
that the scaling exponent p = −2 will apply for large cells,
and/or when the aster is far enough from the cortex. A
spherical cell of size R ∼ 15μm is thus expected to have a
centering stiffness K = N × 0.039 pN/μm. The centering
stiffness measured in the C. elegans embryo, which has
this typical radius, is 16.4 pN/μm, yielding an estimate of
420 microtubules contributing to centering stiffness [10].
In larger (R ∼ 45μm) sea urchin embryos, a stiffness
K ∼ 60 pN/μm was measured, leading to nanonewton-
order forces [2]. About 16000 microtubules would be nec-
essary to create a such stiffness by pushing. Indeed, bulk
pulling was shown to dominate in this system [2].

Centering by cortical pulling. – If motors are lo-
cated on the cell cortex rather than in the bulk, this should
result in a net force f̄(x) = 0 (see eq. (1)). Cortical pulling,
however, has been proposed to lead to efficient centering
if the number of motors on the cortex is limiting [3], or

if microtubule tips can slide on the cortex [13]. In both
cases, we cannot write the net force in the same form as
eq. (1). Here we will consider the case where the number
of motors on the cortex is limiting, as this was recently
shown to control aster positioning in vivo [14,15]. Let us
call f̄ ′ the directed centering force projected on Ox. With
M the number of motors, fm the force exerted by a single
motor, and assuming motors to be uniformely distributed
on the surface, we can write

f̄ ′(x) =
−Mfm

S

∫
S

ux · uθ(r)d2r , (4)

in which S is the cell surface, d2r is the surface element
and ux · uθ(r) = cos θ is the projection of the direction
uθ of the microtubule on the x-axis. In a sphere, this
simplifies to (see eq. (8))

f̄ ′(x) = −2Mfm

3
x. (5)

However, this linear scaling seen in a spherical cell is not
shape independent and does not hold in a conical cell (see
fig. 2). The centering stiffness thus reads K = 2γMfm/3R
(with γ = 1 for a spherical cell), and decreases with
increasing system size. Were the forces due to cortical
pulling, we would thus expect M ∼ 180 motors to par-
ticipate in C. elegans (assuming fm ∼ 2 pN), while about
12× this number would be required to explain the stiffness
measured in sea urchin embryos. Note that, in 2 dimen-
sions, we find K = Mfm/2R, therefore the stiffness of a
2D ansatz is 3/4 that of the real 3D system (see hereafter,
for the derivation in n dimensions).

Generalization to n-dimensional cells. – To reach
a more general understanding, we now consider centering
forces of an agent in any dimension. We will consider the
cell as an n-dimensional space that is symmetric around
the axis Ox. We will introduce the generalized formalism
for bulk pulling (and pushing) and cortical pulling, before
discussing the results. In bulk pulling and pushing, forces
are averaged on all angular directions from the agent’s per-
spective, and thus we term this mechanism autonomous
centering. For cortical pulling, the pulling forces are aver-
aged over all the surface points, and thus the agent’s mo-
tion is controlled by the surface properties [14,15]. Thus,
we name this mechanism directed centering. We will see
that these two mechanisms belong to different universality
classes. From now on, all distances will be normalized by
R, and forces by Nf1 (for autonomous centering) or Mfm

(for directed centering). The generalization of spherical
and conical cells embedded in a n-dimensional space are
called n-ball and n-cone, respectively.

In the case of autonomous centering, the net force f̄p
n

(normalized by Nf1) is, with Γ the gamma function:

f̄p
n(x) =

1
αn

∫ π

0

cos θ sinn−2 (θ)l(x, θ)pdθ , (6)

αn =
Γ[n−1

2 ]
Γ[n

2 ]
√

π . (7)
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In the general case of directed centering, the pulling force
could depend on the distance to the surface. The net force
f̄ ′p

n(x) (normalized by Mfm) can be written:

f̄ ′p
n(x) =

1
Sn

∫
Sn

ux · uθ(r)l′(x, r)pdn−1r , (8)

in which Sn is the surface in n dimension, i.e., an (n− 1)-
dimensional manifold embedded in an n-dimensional
space. We can see this centering mechanism as a gen-
eralization of Newton’s shell [16] for forces of different ex-
ponents, and for any dimension. In the particular case of
a spherical cell we find

f̄ ′p
n(x) =

1
αn

∫ π

0

(
cos φ − x

l′(x, φ)

)
sinn−2 (φ)l′(x, φ)pdφ , (9)

l′(x, φ) =
√

1 + x2 − 2x cos φ . (10)

It is possible to solve f̄ ′p
n(x) analytically, to find, with 2F1

the (2, 1) hypergeometric function:

f̄ ′p
n(x) = −Nf1(1 − x)p−1

×
(

2F1

(
n + 1

2
,
1 − p

2
;n;− 4x

(x − 1)2

)

+(x − 1)2F1

(
n − 1

2
,
1 − p

2
;n − 1;− 4x

(x − 1)2

))
. (11)

Note that here we find f̄ ′−2
3 (x) = 0 in agreement with

Newton’s first theorem [16]; this result is known to be
valid only for a sphere in 3 dimensions.

Scaling properties and shape dependence. – For
autonomous centering, we did not find any generic analyt-
ical solution for any n, p or any general shape. However,
we did find one peculiar scaling for some values of p. For
this, we first define the mean distance p l̄pn to the surface:

l̄pn(x) =
1

αn

∫ π

0

sinn−2 (θ)l(x, θ)pdθ . (12)

Note that lnn(x) is the fraction of space visible from x, and
is equal to 1 for any convex space. Moreover, for a such
convex space,

∂xl(x, θ) = − cos θ − ∂θl(x, θ)
l(x, θ)

sin θ . (13)

And we find that, for any convex shape:

∂xf̄p
n

p
=

αn+2

αn

(
p − n − 1

p − 1

)
l̄p−1
n+2 −

(
p − n

p − 1

)
l̄p−1
n . (14)

Using l̄nn = 1, we find

f̄n+1
n (x) = −n + 1

n
x . (15)

Therefore, in n dimensions, the net (n + 1)-force f̄n+1
n (x)

is linear with x, explaining the surprising scaling proper-
ties we observed in three dimensions. We could not find
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Fig. 4: Top: power law β, fitting f̄p
n(x) ∝ xβ (autonomous

centering, solid lines) and f̄ ′p
n(x) ∝ xβ (directed centering,

dashed lines) in an n-ball for different n. Middle: same as
above, for centering in a n-cone. Bottom: equilibrium position
x∗ such that f̄p

n(x∗) = 0 (solid lines) and such that f̄ ′p
n(x∗) = 0

(dashed lines) for several n. Thick markers on the left indicate
the center of mass of the volume.

any general scaling law for f̄1
n(x), in agreement with our

finding in 3D that the shape of f̄1
3 (x) depends on cell ge-

ometry, fig. 2.
To identify universal scaling laws, we systematically

computed the power law of f̄p
n(x) with x. For this, we

numerically integrated eqs. (6),(8), and fitted f̄p
n(x) by a

power law xβ . We could do this in any shape by redefining
l(x, θ) in eq. (2). This analysis showed that in a sphere,
the net pulling force f̄p

n(x) is linear with x for p = 1 and
p = n + 1, sub-linear in between, and super-linear for
p < 1 and p > n + 1, fig. 4, top. In a cone, the scaling
law f̄n+1

n (x) ∝ x was still valid but f̄1
n(x) was no longer

proportional to x, as expected. By taking n = 3, in the
above results, one falls back on the results discussed in the
first part of this manuscript for the case of 3D shapes.

Because the scaling behaviour of f̄p
n depends on the

dimension n, it is interesting to consider what happens
when one dimension becomes arbitrarily small. For this,
we thus integrated eqs. (6),(12) in a 3-ball symmetrically
truncated along its Oy-axis at a height h, see fig. 1. We
found that the expected scaling law for f̄4

3 still held even
for h → 0, fig. 5. Although this was expected from l̄nn
being space invariant in any convex space, it is interesting

48001-p4
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to see that a n-dimensional system does not behave as
(n − 1)-dimensional system when one dimension becomes
infinitesimally small.

For directed centering mechanisms, we first consider the
simple case p = 1, and note that a convex shape symmetric
around the axis Ox can be entirely described by a function
r(φ), in which r is the distance from a point on the surface,
at angle φ to the center of the space. We can thus write

f̄ ′1
n ∝

∫ π

0

(−x + r(φ) cos(φ)) (r(φ) sin(φ))n−2 dφ. (16)

From there, it is clear that ∂xf̄ ′1
n is a constant depending

on r(φ) but not on x. Therefore, f̄ ′1
n is always linear with

x in a convex space. However, we could not find such
argument for f̄ ′0

n; this is in agreement with our finding
that f̄ ′0

3 is not linear with x in a conical 3D cell, fig. 2.
To understand the generic scaling properties, we could

once again integrate f̄ ′p
n(x) numerically and fit it by a

power law xβ . In general, in an n-ball, for p > 1, the
exponent β appeared to increase with p independently of
the dimension considered, but this result did not hold in
an n-cone. As expected, for p = 1, we found f̄ ′1

n(x) to
be systematically linear with x, be the shape spherical or
conical, fig. 4. Interestingly, the “cortical pulling” mecha-
nism f̄ ′0

n appeared linear only for a 3D spherical cell, and
was not linear either for non-spherical cells or for n �= 3.
Thus, only the scaling f̄ ′1

n(x) ∝ x seems universal.

Effective stiffness. – For both autonomous and di-
rected centering, we next derived expressions for the ef-
fective stiffness in a spherical cell in n-dimensions. We
defined the effective stiffness Kp

n, as

Kp
n = −∂xf̄p

n

∣∣∣∣
x=0

, K ′p
n = −∂xf̄ ′p

n

∣∣∣∣
x=0

. (17)

For autonomous centering, and in a spherical cell, we can
keep the aforementioned definition of l(θ, x), see eq. (2),
and we find the stiffness (normalized by Nf1/R):

Kp
n = p

Γ(n/2)
Γ(1 + n/2)

=
p

n
. (18)

For directed centering, using eqn. (11), (17), we can
deduce the stiffness K ′p

n (normalized by Mfm/R) in a
sphere:

K ′p
n =

n − 1 + p

n
. (19)

The dependence on n and p of the stiffness is very different
from the autonomous centering case, compare eq. (18),
further highlighting the fundamental differences between
autonomous and directed centering.

Definition of the cell center. – As mentioned, in
non-spherical cells, the aster seems to find the center of
mass [1]. We therefore inquired which equilibrium posi-
tion x∗ may be reached in different centering mechanisms.
Surprisingly, neither autonomous nor directed mechanism
converged strictly to the center of mass of the space,
fig. 4, bottom. Interestingly, x∗ was not even necessar-
ily monotonous in p (e.g., for n = 3). This highlights the
non-trivial properties of centering forces. While this find-
ing is theoretically interesting, it remains to be determined
whether the predicted differences are within the range of
experimental resolution in the case of pronucleus center-
ing. More generally, this is to be kept in mind when using
such centering schemes to find the center of a space.

Centering in non-convex spaces. – Eventually,
we studied centering mechanisms in a non-convex shape
by considering a doublet of spheres, truncated on their
Ox-axis at x = 0, mimicking the geometry of a dividing
cell, see fig. 1. We took 3D spheres of radius 1/2 ≤ r1 ≤ 1,
truncated at x = 0 and with centers at x = −1 + r1 and
1−r1, see fig. 1. For such a shape, all the volume is not vis-
ible by any point in the sphere, and we do not expect l̄nn to
be space invariant. Indeed, we found that the violation of
the scaling law initially increases as r1 decreases from 1,
see fig. 6, top. As the doublet closes (r1 → 1/2), the
scaling laws are restored because the visible space tends
towards a single sphere.

We would also expect the center to be at x∗ = 0 for
r1 = 1 (a spherical cell) and x∗ = ±0.5 for r1 = 0.5
(a perfect doublet). Indeed, we find a transition of x∗ from
0 to 0.5 when r1 → 1/2. This transition happens after
a threshold value of r1 that depends on p; whether this
transition is continuous or not also depends on p, fig. 6,
bottom. This thus resembles a sub-critical pitchfork phase
transition. Overall, the higher p, the higher the threshold
value of r1 both for autonomous and for directed centering.

Alternative centering mechanisms. – Beyond the
biological context, another centering mechanism that
could be considered is to minimize l̄pn(x). Going down the
gradient of l̄pn yields a force gp

n(x) = −∂x l̄pn(x). Note that
an agent implementing such a strategy needs some kind
of memory in order to compute the gradient, while the
biologically relevant strategies require no memory. It is

48001-p5
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possible to show that

gp
n(x) = p

(
p − n

p − 1

)
f̄p−1

n (x) . (20)

Because of this result, the scaling properties of gp
n(x) are

directly known from that of f̄p−1
n (x). It is interesting to

note that gp
n is a centering force for p > n and promotes

decentering for p < n, and that, ∀n, gn
n(x) = 0.

Discussion. – We investigated the scaling properties of
different centering mechanisms associated to microtubule
forces: bulk pulling, pushing, and cortical pulling. In three
dimensions, we found that bulk pulling exhibited surpris-
ing properties: the scaling of the force with the distance to
the center was not straightforwardly given by the scaling of
the individual microtubule forces. When the force per mi-
crotubule was proportional to microtubule length, the net
centering force was proportional to the distance to the cen-
ter, but only for a spherical cell. Similarly, cortical pulling
had a force proportional to the distance to the center only
in a spherical cell. However, we found that the linear scal-
ing of f̄4 was independent of the geometry. Pushing can
be mapped to the same problem as bulk pulling, but with
a negative power law p. This analysis thus suggests that
certain modes of microtubule force exertion may be more
robust to cell shape or size variations, and could provide a
theoretical rationale to understand evolutionary pressure
that promote one mode of aster centering over another.

It also matches previous findings that certain modes of
centering can be more sensitive to asymmetric cues than
other [5]. We did not consider dynamic processes such
as aster oscillations and decentering. However, these pro-
cesses are strongly controlled by the value of the centering
stiffness (e.g., the amplitude of aster oscillations, or the
extent of aster decentration) [2,17,18].

Experimentally, the stiffness K has been used to char-
acterize the centering forces. In this letter, we clarified
how K depends on dimensionality. This may be of broad
biological relevance: rod-like cells like fission yeast have
microtubules organized as a 1D array [19], and flat ad-
herent cells might have an essentially 2D aster [20]. For
3D cells, 2D approximations of K can be off by up to
50%. More generally, K also depends on cell size in a
way depending on p, which could be used experimentally
to determine p if the centering mechanism is known. The
stiffness only gives part of the story: to determine the cen-
tering mechanism, measuring the scaling of the force with
x can be of high value. For example centering by pushing
has a distinct scaling. While cortical and bulk pulling can
yield the sale scaling for f̄(x) and f̄ ′(x), we showed that
this scaling should depend differently on shape and size
for these two modes of pulling. Therefore, measuring how
K scales with R in one shape, and the scaling of the force
with x in several shapes, should yield a unique choice of
the centering mechanism and of p [9,10].

To reach a more general understanding, we extended
our study to an n-dimensional space. This allowed us
to understand that the linear scaling of f̄n+1

n (x) with x
was a general property in any convex space, while f̄1

n was
not necessarily linear with x. A generalization of corti-
cal pulling showed no general reason for the linearity of
f̄ ′0

n(x) (which is indeed not universal), while f̄ ′1
n(x) was

always linear with x for a convex cell. At this stage, it is
interesting to note that cortical pulling can be mapped to
a generalization of Newton’s shell, but not bulk pulling;
those two mechanisms, with their different scaling proper-
ties, thus belong to different universality classes. Eventu-
ally, we also showed that the universal scaling laws break
down when one assumption, the convexity of the space,
is violated. For very non-convex cells, the “centering”
mechanisms may converge far from the geometric center.
Biologically, this could be mitigated by other properties
of the branching of microtubule networks, such as branch-
ing or nucleation away from the nucleus/centrosome. In
such case we expect the exponent p to be some fractal di-
mension, or that eq. (6) could be altogether broken. Even
in convex cells, the definition of center is not necessarily
straightforward. Neither centering mechanism actually led
to the center of mass in a conical cell; rather, the zero-force
position depends non-trivially on p and n.

These findings show a new behavior of a simple phys-
ical system. Further work on centering should include
these non-trivial scaling properties. While this problem
is inspired by biology, it has more generic applications,
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including the design of autonomous systems, or algorithms
to find the center of a space.
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Appendix: dynamic microtubules. – We compute
the fraction of microtubules touching the cortex at a dis-
tance l normalized by R. We take the most common
assumption that microtubules may start depolymerizing
(undergo catastrophe) with a rate c0 upon touching the
cortex; if so, they depolymerize completely (no rescue).
After a such event, microtubules start growing again at
a speed v (normalized by R), and they can undergo no
catastrophe until they touch the cortex. In this limit, the
probability that a microtubule at a distance l from the cor-
tex is pushing against it is l0/(l0 + l) with l0 = v/Rc0. In
the regime l0 
 1, most microtubules are pushing against
the cortex and there is little net centering. In the limit
l0 � 1, the probability for a microtubule to be pushing on
the cortex is l0/l, which should lead to centering.

REFERENCES

[1] Minc Nicolas, Burgess David and Chang Fred, Cell,
144 (2011) 414.

[2] Tanimoto Hirokazu, Sallé Jeremy, Dodin Louise
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