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The integration of biochemical and biomechanical elements is

at the heart of morphogenesis. While animal cells are relatively

soft objects which shape and mechanics is mostly regulated by

cytoskeletal networks, walled cells including those of plants,

fungi and bacteria are encased in a rigid cell wall which resist

high internal turgor pressure. How these particular mechanical

properties may influence basic cellular processes, such as

growth, shape and division remains poorly understood. Recent

work using the model fungal cell fission yeast,

Schizosaccharomyces pombe, highlights important

contribution of cell mechanics to various morphogenesis

processes. We envision this genetically tractable system to

serve as a novel standard for the mechanobiology of walled

cell.
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Introduction
Growth and form of biological matter ultimately relies on

similar mechanical principles as for non-living matter.

Cells and tissues grow and adopt defined shapes from

the dynamic biochemical regulation of mechanical ele-

ments at multiple scales: from nanometric molecular

motors, to millimetric tissue stress [1,2]. The shape of

animal cells, for instance, is set by a balance between

cortical tension and adhesion [3]. Cortical tension is

mostly regulated by the actin cortex, a thin layer of

branched actin filaments beneath the plasma membrane

[4]. Opposite to animal cells, plants, bacteria and fungi,

possess an extracellular case outside their plasma mem-

brane called the cell wall, which has conceptual equiva-

lence with the actin cortex and/or elements of the

extracellular matrix. The cell wall is thin, typically hun-

dreds of nm, and is made of heterogeneous polysacchar-

ides and glycoproteins interwoven by hydrogen and
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covalent bonds. Walled cells are also characterized by

high internal osmotic pressure, called turgor, typically 3–4

orders of magnitude higher than in animal cells [5–7,8�,9].

The balance between turgor and wall mechanics has long

been recognized to influence the shape and growth prop-

erties of walled cells [10–12]. Recent advances in micros-

copy and biophysical approaches, have allowed to

measure and manipulate relevant mechanical parameters

of cell walls and turgor [6,8�,9,13��]. These technical

progresses, combined with a growing appreciation of

the importance of physical considerations in biology,

may begin to challenge and refine some basic paradigms

in the morphogenesis of walled cells.

Here we focus on recent progress in the mechanics and

morphogenesis of fission yeast cells. These rod-shape

cells exhibit stereotypical tip growth and elongate from

7 to 14 mm in length during interphase, with a near

constant diameter of 4 mm [14,15]. Growth ceases at

mitosis and cells divide in their exact middle [16]. For

tip elongation, polarity machineries organized around

active GTP-Cdc42 and actin, are targeted to cell tips

to restrict membrane and cell wall addition there [14].

During cell division, similar modules are re-targeted to

the cell middle to drive the assembly of a cytokinetic ring

and septum needed for division [16]. To date, this system

has been mostly used as a model to dissect the basics of

cell-cycle regulation and cytoskeletal assembly which are

conserved from yeast to humans, and their contribution to

growth, size, polarized behavior and cell shape [17]. The

influence of cell mechanics however, is only beginning to

be appreciated. We will first introduce the physical pa-

rameters characterizing fission yeast mechanics, the mo-

lecular elements that control these mechanical properties,

and then discuss how they may influence processes such

as cell shape, growth, division and polarization.

Main text
Mechanical properties of fission yeast cells

The balance between mechanical stress in the cell wall

and turgor pressure contributes to define fission yeast cell

shape (Figure 1). If turgor is reduced by submitting cells

to high osmolarity medium (by adding sorbitol), cells

shrink in a dose-dependent manner, and cease growth

temporarily until turgor has adapted (Figure 1a) [8�,13��].
Second, if the cell wall is digested, cells rapidly burst; and

if wall digestion is done in high osmolarity medium, to

reduce turgor, they form round protoplasts which, in

certain conditions can leave behind cell wall remnants

(sacculus) with near intact rod-shapes (Figure 1b) [18].

These extreme experimental evidences, which apply to

most walled cell, suggest that the values of mechanical
www.sciencedirect.com
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Figure 1
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Cell mechanics and cell shape in fission yeast. (a) Cell shape changes upon hyper- (top panel) or hypo- (bottom panel) osmotic shock. Water

permeates the cell, to balance the difference in osmolytes concentration, causing drastic changes in turgor pressure and cell wall stress. As a

result, cells rapidly change shape, by shrinking (hyperosmosis) or swelling (hypoosmosis). (b) Cell shape changes after enzymatic digestion of the

cell wall in hyperosmotic (top) or isoosmotic (bottom) media. In hyperosmotic medium, the cell wall opens, but turgor is low, which yields to the

slow exit of the cell membrane and cytoplasm into a round protoplast leaving behind cell wall remnants, that may maintain near intact rod-shape

in certain conditions. In isoosmotic medium, turgor is high and an opening in the cell wall yields immediate cell lysis since turgor is not balanced

anymore by cell wall stress.
parameters characterizing turgor and cell wall are impor-

tant elements for morphogenesis. How can they be

measured?

On time scales on the order of few minutes, the fission

yeast cell wall may behave as an elastic material (‘a

spring’). This has been evidenced in experiments in

which cells were pushed into bent shapes into microfab-

ricated wells [8�,19,20]. In this assay, cells occasionally
www.sciencedirect.com 
popped out of microwells and restored their straight rod-

shapes in seconds, suggesting the wall is elastic. On

longer time-scales (tens of minutes to hours), however,

the wall may also incorporate irreversible deformations

and behave more as a plastic material; but relevant

measurements are still lacking to document these aspects.

The bulk elastic modulus, or Young’s modulus of an

elastic material, has units of pressure, and characterizes
Current Opinion in Microbiology 2015, 28:36–45
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its intensive properties, independently of its geometry.

For the cell wall, it can be seen as a physical measure of

the composition and/or crosslinking of sugars chains. The

surface modulus, which is the product of the bulk modu-

lus with wall thickness, which has been estimated to be

around 200 nm from transmission electron microscopy

images [21,22], has units of tension, and provides the

most relevant parameter to understand the contribution

of wall mechanics to cell shape and growth [8�,23]. A

method often used to compute surface mechanics in

various cell types is atomic force microscopy (AFM)

[24–26]. However, a complication of using this approach

in walled cells, is to separate the contribution of wall

mechanical properties and turgor pressure [9,27,28]. A

rather simpler method, consists of using microfabricated

wells made of elastomers with controlled elastic proper-

ties, as single cell force sensors. When fission yeast cells

are pushed into these wells, they will buckle and deform

the chamber at the same time. The balance between the

buckling force and chamber deformation yields an esti-

mate of the wall surface modulus of 6.5 N m�1, typically

3–4 orders of magnitude higher than measured surface

tension in animal cells [29], which corresponds to a bulk

elastic modulus of about 30 MPa, similar to that of rubber

[8�].

Estimating the values of internal turgor pressure in small

cells such as yeast, can be challenging, as it involves

impaling cells with pressure probes [6]. Here again

cell-scale microchambers, have been used to estimate

turgor values, by measuring how cells deform an elastic

microchambers, to derive force–velocity relationships for

single growing cells. Based on a minimal model for

growth, these data yield estimates of the maximal force

that yeast cells exert as they grow, to be on the order of

11 mN, which corresponds to a turgor pressure of approx-

imately 0.85 MPa [8�].

These measurements, which fall within the same range as

for other walled cell such as bacteria, plants and other

fungi [6,9,26,30,31]; provide a basic mechanical picture of

fission yeast cells, similar to an inflated tire of a racing

bicycle. They are key to support quantitative descriptions

and modeling, and to test basic concepts in other me-

chanically-driven processes like endocytosis and cytoki-

nesis (see hereafter). These mean values are however not

sufficient to explain the asymmetric morphology of fission

yeast cells [12]. In rod-shaped bacteria, for instance,

anisotropies in the elasticity of the cell wall plausibly

created by a circumferential orientation of wall fibers, are

thought to contribute to define a rod [31,32]. In other

tip-growing cells, like plant pollen tubes, local variations

in wall mechanical properties along the cell perimeter,

associated with spatial pattern of wall composition have

been proposed to guide tip growth [33]. Future work in

fission yeast will reveal which spatial mechanical aniso-

tropies may guide rod-shape establishment, and more
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importantly how these anisotropies relate to intracellular

distribution of polarity machineries.

The fission yeast cell wall

The mechanical properties of the cell wall are regulated by

its biochemical composition, but the links between me-

chanics and biochemistry remain poorly described. The

fission yeast cell wall is a polymer network made of two

major polysaccharides: b(1,3) glucan chains with b(1,6)

branches and a(1,3) glucan chains attached to short chains

of a(1,4)glucan; two minor polysaccharides: linear b(1,3)

glucan chains and b(1,6) glucan chains with a high amount

of b(1,3) branches; and glycoproteins (a-galactomannan).

Glucan synthases promote the synthesis of sugar chains.

Endoglucanases digest and remodel the cell wall by

shortening the chains, and glucanosyl-transferases may

promote chain elongations and control crosslinking [34].

The architecture, synthesis and mechanics of the cell wall

vary in different life stages of Schizosaccharomyces
pombe. In interphase, new cell wall is synthesized at

growing cell tips through the localization and activation

of the b(1,3) glucan synthase Bgs4 and the putative a-

glucan synthase Ags1/Mok1 [35–37]. Bgs1 and Bgs3, two

other putative b-glucan synthases, are also recruited to

cell tips, but their function there remains to be clarified

[38,39]. One glucanase, Exg2, and two b(1,3)-glucanosyl-

transferases Gas1 and Gas2 are also localized to cell tips

and could potentially influence wall synthesis or cross-

linking [40,41] (Figure 2a). For cytokinesis, the septum is

assembled in a centripetal manner outside the ring in the

cell middle, and is composed of a central primary septum,

flanked by two secondary septa. Bgs1 may be predomi-

nantly involved in assembling the primary septum [42],

while Bgs4 and Ags1 may function in the synthesis of both

primary and secondary septa [35,43,44]. After septum has

finished ingression, it is digested in its middle by the

endoglucanases Eng1, Exg1 and Agn1 to complete cell

separation [40,45,46] (Figure 2b). During mating, and

cell–cell fusion, a local degradation and remodeling of

the cell wall is necessary to allow the fusion of the two

plasma membranes of mating partners. This event is

mechanically challenging because an opening of the walls

before fusion would yield cell lysis; and involves a spe-

cialized focused actin structure which ensures precise

spatio-temporal patterning of endoglucanases and glucan

synthases around mating tips [47��]. Ascospores, which

are products of meiosis, possess a particular cell wall

composed of an inner spore wall surrounded by a thin

outer spore wall, that confers resistance to spores

[13��,48]. Although the composition of the spore wall

remain understudied, it may involve in addition to other

aforementioned enzymes a specific set of factors, such as

the b-glucan synthase Bgs2, the a-glucan synthase

Mok12, Mok13 and Mok14, [48–50] and the glucano-

syl-transferase Gas4 for elongation and crosslinks [51]. In

addition, the chitin synthase Chs1 may promote chitin or
www.sciencedirect.com
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Figure 2

(a)

(c)

(b)

CW CW

SS SS

PS

Septum Growth

Cell Wall Synthesis
for Division

Cell Wall Synthesis
for Tip Growth

Turgor Regulation

P P
?

H2O

H2O

P

Glycerol Synthesis

P

P

+ Osmolyte

Adaptive
Response

Septum Digestion

PS

PM
Septum
Front

Gas2

Exg1

Eng1

A
ng

1

Gas1
Ags1

Bgs4

Bgs1

Bgs3

Exg2

Gas2

Gas1 Ags1Bgs1

Mpr1 Mpr1

Tdh1
Tdh1

Mcs4

Wis4

Wis1

Wis1

Sty1

Sty1

Arf1

Arf1

Gpd1

P
P

P
P

P

Win1

Bgs4

PM

Current Opinion in Microbiology

Molecular regulation of fission yeast mechanics. (a) Cell wall synthesis at cell tips during interphase. a and b glucan synthases (Ags1, Bgs4) at the

plasma membrane catalyze the synthesis of sugar chains in the cell wall. Other putative b glucan synthases (Bgs1 and 3) are also rectruited there,

but their role remains uncharacterized. Gas1,2 are glucanosyltransferases that may influence sugar chain elongation and crosslinks. Exg2 is a

predicted glucanase that could remodel or digest the wall. The cell wall is a three layered structure with an inner and outer electron dense layers

and a less dense middle layer. (b) Septum synthesis and degradation during cytokinesis and cell division. Bottom left panel: During cytokinesis a

and b glucan synthases and glucanosyltransferases are recruited at the cell middle to synthesize the septum (PS: primary septum, SS: secondary
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chitosan synthesis, a component absent from vegetative

walls [52]. The outer spore wall features extreme me-

chanical properties, and has been suggested to have a

Young’s elastic modulus 30 times higher than the vege-

tative cell wall [13��].

Synthesis and remodeling of the cell wall is regulated in

space and time by the Rho GTPases Rho1, Rho2 and

Rho1-homologue Rho5 [53–58]. Rho1 regulates the ac-

tivity of b-glucans synthases both directly and/or through

the protein kinases C, Pck1 and Pck2, while Rho2, may

regulate a-glucans synthases through Pck2 [57,58]. Dam-

age in the cell wall stimulates the cell wall integrity

pathway mediated by the MAPK cascade Mkh1/Pek1/

Pmk1 [59], which results in the activation of Pck1 and

Pck2 by Rho1 and Rho2, for cell wall repair [60,61].

Recent work in budding yeast suggests that cell wall

damage may also be linked to polarity machineries to

ensure the very local recruitment of repairing cell wall

factories [62��].

Overall, the links between wall assembly/composition,

mechanics and morphogenesis remain poorly established

at a quantitative level. Many mutants in synthases and

Rho GTPases activation display globally thinner or

thicker walls, or dramatic changes in wall composition

[36,42,63–67]; while others may have more localized

defects, at cell tips or septum [40,43]. These defects have

striking consequences on cell shapes and growth patterns;

which support the broad concept that wall properties, and

likely mechanics, is key to control cell shape. Integration

of biochemical tools with mechanical measurements will

be necessary to rigorously establish those links.

Turgor pressure regulation

Turgor pressure in walled cells is osmotically generated,

and maintained through rapid and efficient homeostatic

systems [68]. In fission yeast, a hyperosmotic stress leads

to the intracellular accumulation of glycerol [69]

(Figure 2c). This mechanism is regulated by the stress

activated pathway through the MAPK Sty1, a homolog of

Hog1 in budding yeast and p38 in mammalian cells [70–
72]. This cascade is coordinated by Mcs4 which forms a

complex with the two MAPKKK, Win1 and Wis4 [73–76].

In hyperosmotic conditions, the MAPKK Wis1 becomes

phosphorylated and unbinds from this complex, to phos-

phorylate the MAPK Sty1, which enters the nucleus to

activate the transcription factor Atf1 [71,77]. Atf1 then

regulates the transcription of 13 core genes [78]. This

includes an increase in the expression of Gpd1 and Gpd2,
(Figure 2 Legend Continued ) septum, CW: cell wall, PM: plasma membra

the septum to degrade the PS and cell wall edges for cell separations. (c) O

treatments cells first shrink and activate the stress pathway to increase inte

of signaling pathways involved in turgor maintenance upon hyperosmosis. H

cytosol, and consequent decrease in turgor pressure. This activates a MAP

which promotes glycerol synthesis to balance osmotic differences and resto
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glycerol-3-phosphate dehydrogenases, which promote

glycerol synthesis; and the repression of genes involved

in the degradation and translocation of sugars to compen-

sate osmotic imbalance and restore turgor [69,79]. To fine

tune pressure adaptation, Atf1 also promotes a negative

feedback loop, through the transcription of psy1 and psy2,

that encode for phosphatases that inhibit Sty1 [71,80]. In

budding yeast, several trans-membrane proteins have

been proposed as upstream ‘osmosensors’ to trigger

Hog1-dependent adaptation [81–83], whether similar

systems exist or function in S. pombe remains to be

explored.

The response to hypoosmotic stress is markedly different,

and admittedly less understood. It leads to cell swelling

and intracellular Ca2+ increase [84]. Two homologues of

the E. coli mechanosensitive channels MscS [85] have

been recently proposed to influence this response: Msy1

and Msy2. Both are ER associated proteins, which be-

come overexpressed in hypoosmotic conditions to support

cell viability, but mechanistic details remain to be estab-

lished [86,87]. Both hyper-osmotic and hypo-osmotic

stress also promote the activation of Pmk1 and the cell

wall integrity pathway, suggesting links between regula-

tory systems of cell mechanical properties [88,89].

Cell mechanics and cell growth

How do walled cell grow is not fully understood. Both

material synthesis (membrane and cell wall) and turgor

pressure are required for growth, yet, how these parame-

ters contribute to define elongation rates is not known [8�].
Without turgor, deposition of new material, is predicted to

yield a thicker wall with no growth, and turgor alone would

only yield thinning of the wall [90]. Those important

questions have long motivated theoretician, and several

models for walled cell growth have been proposed over the

years [90,91,23,8�,92,13��,106]. Experimental tests for

these models are still sparse. A commonly used modeling

framework, is to represent growth as a viscoplastic process.

In that view the elastic cell wall freshly deposited at cell

tips, is deformed by the stress exerted by internal turgor

and this deformation becomes irreversible (plastic) passed

a certain deformation threshold. The details for how cell

wall remodeling may relate to viscoplasticity remain how-

ever poorly documented [91]. Conceptually, this amounts

to an ‘ageing’ picture of the wall: as new wall is being

incorporated at the tip it becomes irreversibly stretched

with a certain time scale. Old cell wall may then flow along

cell sides during cell elongation to maintain a constant wall

thickness (Figure 3a).
ne). Bottom right panel, glucanases are then targeted to the sides of

smoadaptation to hyperosmotic shocks. (Left) Upon hyperosmotic

rnal turgor and recover their initial length and diameter. (Right) Details
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Figure 3
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Influence of cell mechanics on fission yeast growth, division, endocytosis and polarization. (a) During tip elongation, cell wall is added at cell tip,

and strained by the work of turgor and becomes irreversibly deformed for cell length addition. Maintenance of a constant cell wall thickness

implies cell wall flows from the tip to cell sides. (b) Mechanical considerations in fission yeast cytokinesis. During cytokinesis, the acto-myosin ring
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These mathematical models can make interesting pre-

dictions on cell diameters, exact tip shapes, or the de-

pendence of elongation rates on mechanical values. For

instance, a simple scaling model can recapitulate the

variation of cell size observed among many walled cells

based solely on their mechanical properties [23]. The

probably most complete model adapted to fission yeast tip

growth incorporates a spatial distribution of wall synthesis

directly correlated with GTP-Cdc42 concentration at cell

tips. This model makes important tests on the stability

conditions required to maintain a straight rod-shape axis

and a fixed diameter over generations of dividing cells,

and predicts the existence of complex feedbacks between

cell geometry and Cdc42-based polarity [93��].

Role of cell mechanics in endocytosis and cytokinesis

How might other mechanically-driven process, like cyto-

kinesis and endocytosis may adapt to the particular me-

chanical properties of fission yeast or other walled cells?

During cytokinesis, for instance, a conserved acto-myosin

contractile ring attached beneath the plasma membrane

has long been thought to provide the mechanical force to

drive membrane ingression [94,95]. However, simple

calculations suggest that the mechanical work exerted

by the ring can only account for a small fraction (around

1%) of the work needed to overcome internal turgor

pressure [96�]. Recent studies indeed indicate that re-

ducing turgor yields faster constriction rates, and that

once cytokinesis has initiated, the ring may become

dispensable for membrane ingression and septum com-

pletion [43,96�]. This work suggests that most of the

mechanical work may be generated by septum assembly,

rather than the ring, shifting an important paradigm for

cell division in yeast (Figure 3b). The function of the ring,

could be instead to keep an homogenous septum assem-

bly around the cell equator, a process plausibly regulated

by a curvature-dependent septum assembly mechanism

[97��].

Endocytosis, also involves local inward deformation of the

plasma membrane to invaginate vesicles with a typical

size of tens of nm. This process requires the subsequent

assembly of various coat proteins, such as clathrin, myosin

and BAR-proteins [98]. Although actin is dispensable for

endocytosis in animal cells, it is strictly required in yeast

[99]. Two recent studies, one performed in budding

yeast [99] and one in fission yeast [100�], suggest that

endocytosis also works against turgor, and that actin
( Figure 3 Legend Continued ) is surrounded by the septum. Forces genera

ring progression against high turgor pressure (adapted from [96�]). (c) Mech

vesicles at cell tips; (Right) Close up on a single vesicle: invagination of the 

polymerizes and pushes against the membrane and cell wall (red arrows) to

and polarization in fission yeast spores. In spores the inner wall (ISW) is sur

mechanically confine spores. Upon germination single polarity domains (red

promoting local growth sites that fail to progress. When spores have grown

opening releases the hindering effect of the OSW, and polarity becomes sta
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polymerization around endocytic vesicles generate the

necessary forces to overcome turgor (Figure 3c). One set

of striking evidence supporting these claims is to show

that a reduction in turgor can rescue the defects of

endocytic mutants and the requirement for actin. Alto-

gether these data suggest that the regulation of these

essential processes may have evolved along with extreme

variations in cellular mechanics.

Cell mechanics and polarity

Cell mechanics may also influence cellular spatial organi-

zation. Recent studies in migrating animal cells have for

instance suggested that surface mechanics, regulated by

changes in the actin cortex or membrane tension, could

contribute to cell polarization and directed migration

[101,102]. Similarly, polarized walled cells such as fungi

or plant roots can exhibit thigmotropism, a process during

which polarity reorients as a consequence of mechanical

contact with a physical barrier [103,104]. In fission yeast, a

recent study investigating how initially round spores

define their very first polar growth axis provides initial

evidence that similar mechanical-polarity crosstalk may

exist in these cells [13��]. A very intriguing observation of

this work was to find that single polarity domains, built

around active Cdc42, spontaneously polarize in germinat-

ing spores, but first exhibit a long unstable phase of

successive assembly and disassembly, to eventually sta-

bilize to promote polar tip extension at outgrowth. Inter-

estingly, this switch in polarized behavior was found to be

concomitant with the opening of the outer spore wall at

the site of outgrowth (Figure 3d). By combining mathe-

matical models and laser ablation of the spore wall, this

study demonstrates that the spore wall has destabilizing

effects on polarity. When the rigid spore wall is intact it

acts as a barrier that hinders growth and destabilizes

polarity, and opening of the spore wall (either naturally

or with a laser) is sufficient to stabilize polarity. These

data suggest the existence of feedback systems between

wall mechanics and polarity machineries. By considering

and testing different hypothesis of feedback (surface

curvature, stress in the wall, among others), the authors

propose that a positive feedback between growth and

polarity, in which polarity localizes growth and more

surface growth tend to maintain polarity in place, can

explain polarity stabilization in outgrowing spores. Future

work should reveal how these feedbacks may be regulat-

ed, and if they have relevance to other cellular states and

cell types.
ted by cell wall assembly (orange arrows) in the septum may support

anical considerations in fission yeast endocytosis. (Left) Endocytic

plasma membrane may be driven by a branched actin network that

 overcome turgor pressure (adapted from [100�]). (d) Cell mechanics

rounded by a particular rigid outer spore wall (OSW) which may

 patch) assemble and disassemble around the spore surface

 enough, the OSW ruptures at the site of the polarity domain; and this

ble for outgrowth and polar tip extension (adapted from [13��]).
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Conclusion
The contribution of cell mechanics to morphogenesis, is

becoming more and more appreciated in different fields,

from bacterial growth to embryonic development and

tissue homeostasis [1,105]. In fission yeast, which is

probably the most established system to link gene func-

tion and cell shape, the role of turgor and cell wall

mechanics remain surprisingly understudied. This is in

contrast with the literature in plants, bacteria and other

fungal cells, which have long focused on the mechanics of

the wall and turgor for describing morphogenesis. A key

endeavor of future studies in fission yeast, will thus be to

document how cytoskeletal organization, and more gen-

erally gene function, ultimately contribute to pattern and

regulate cellular mechanics. Given the genetic power of

this system, and its quantitative growth and shape habits,

we foresee that it could serve as a novel standard for

establishing the biomechanical rules controlling the mor-

phogenesis of single walled cells.
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